留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Acute lesions of primary visual cortical areas in adult cats inactivate responses of neurons in higher visual cortices

ZHANG Hui MENG Jian-Jun WANG Ke LIU Rui-Long XI Min-Min HUA Tian-Miao

ZHANG Hui, MENG Jian-Jun, WANG Ke, LIU Rui-Long, XI Min-Min, HUA Tian-Miao. Acute lesions of primary visual cortical areas in adult cats inactivate responses of neurons in higher visual cortices. Zoological Research, 2012, (2): 218-224. doi: 10.3724/SP.J.1141.2012.02218
Citation: ZHANG Hui, MENG Jian-Jun, WANG Ke, LIU Rui-Long, XI Min-Min, HUA Tian-Miao. Acute lesions of primary visual cortical areas in adult cats inactivate responses of neurons in higher visual cortices. Zoological Research, 2012, (2): 218-224. doi: 10.3724/SP.J.1141.2012.02218

急性毁损猫的初级视区使高级视区细胞失去对视觉刺激的诱发反应

doi: 10.3724/SP.J.1141.2012.02218
基金项目: National Natural Science Foundation of China (31171082); Natural Science Foundation of Anhui Province (070413138); Key Research Foundation of Anhui Province Education Department (KJ2009A167)
详细信息
  • 中图分类号: Q436; Q429+2; Q421; Q424

Acute lesions of primary visual cortical areas in adult cats inactivate responses of neurons in higher visual cortices

Funds: National Natural Science Foundation of China (31171082); Natural Science Foundation of Anhui Province (070413138); KeyResearch Foundation of Anhui Province Education Department (KJ2009A167)
  • 摘要: 心理物理学研究提示,初级视区毁损后的视觉残留可能是通过外纹状皮层的神经网络重组介导的,但缺少支持这一假说的电生理实验证据。采用在体细胞外单细胞记录技术,该研究分别检测了初级视区(主要包括17和18区)急性毁损猫和正常对照猫的高级视区(包括19、20和21区)神经元对不同视觉刺激的反应性。结果显示,与对照相比,急性毁损初级视区使99.3%的高级视区神经元丧失对运动光栅刺激的诱发反应,93%的神经元丧失对闪光刺激的反应。该结果表明,急性毁损成年猫的初级视皮层可能会导致其绝大部分视觉能力丧失。在幼年期实施初级视皮层毁损后,成年猫出现的残留视觉可能主要是由于手术后皮层下神经核团与外纹状皮层之间的通路重组引起的。
  • [1] Azzopardi P, Fallah M, Gross CG, Rodman HR. 2003. Response latencies of neurons in visual areas MT and MST of monkeys with striate cortex lesions[J]. Neuropsychologia, 41(13): 1738-1756.
    [2] Barbur JL, Ruddock KH, Waterfield VA. 1980. Human visual responses in the absence of the geniculo-calcarine projection [J]. Brain, 103(4): 905-928.
    [3] Baseler HA, Morland AB, Wandell BA. 1999. Topographic organization of human visual areas in the absence of input from primary cortex[J]. J Neurosci, 19(7): 2619-2627.
    [4] Bishop PO, Kozak W, Vakkur GJ. 1962. Some quantitative aspects of the cat’s eye: axis and plane of reference, visual field co-ordinates and optics[J]. J Physiol, 163(3): 466-502.
    [5] Brainard DH. 1997. The psychophysics toolbox[J]. Spat Vis, 10(4): 433-436.
    [6] Bridge H, Thomas O, Jbabdi S, Cowey A. 2008. Changes in connectivity after visual cortical brain damage underlie altered visual function[J]. Brain, 131(6): 1433-1444.
    [7] Chino YM, Kaas JH, Smith EL III, Langston AL, Cheng H. 1992. Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina[J]. Vision Res, 32(5): 789-796.
    [8] Collins CE, Xu XM, Khaytin I, Kaskan PM, Casagrande VA, Kaas JH. 2005. Optical imaging of visually evoked responses in the middle temporal area after deactivation of primary visual cortex in adult primates[J]. Proc Natl Acad Sci USA, 102(15): 5594-5599.
    [9] Cowey A. 1962. Visual field defects in monkeys[J]. Nature, 193(4812): 302.
    [10] Cowey A, Stoerig P. 1991. The neurobiology of blindsight[J]. Trends Neurosci, 14(4): 140-145.
    [11] Cowey A, Stoerig P. 1995. Blindsight in monkeys[J]. Nature, 373(6511): 247-249.
    [12] Cowey A, Stoerig P. 1997. Visual detection in monkeys with blindsight[J]. Neuropsychologia, 35(7): 929-939.
    [13] Eysel UT, Schweigart G, Mittmann T, Eyding D, Qu Y, Vandesande F, Orban G, Arckens L. 1999. Reorganization in the visual cortex after retinal and cortical damage[J]. Restor Neurol Neurosci, 15(2-3): 153-164.
    [14] Girard P, Bullier J. 1989. Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey[J]. J Neurophysiol, 62(6): 1287-1302.
    [15] Girard P, Salin PA, Bullier J. 1991a. Visual activity in areas V3a and V3 during reversible inactivation of area V1 in the macaque monkey[J]. J Neurophysiol, 66(5): 1493-1503.
    [16] Girard P, Salin PA, Bullier J. 1991b. Visual activity in macaque area V4 depends on area 17 input[J]. Neuroreport, 2(2): 81-84.
    [17] Girard P, Salin PA, Bullier J. 1992. Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1[J]. J Neurophysiol, 67(6): 1437-1446.
    [18] Goebel R, Muckli L, Zanella F E, Singer W, Stoerig P. 2001. Sustained extrastriate cortical activation without visual awareness revealed by fMRI studies of hemianopic patients[J]. Vision Res, 41(10-11): 1459-1474.
    [19] Hua TM, Bao PL, Huang CB, Wang ZH, Xu JW, Zhou YF, Lu ZL. 2010. Perceptual learning improves contrast sensitivity of V1 neurons in cats[J]. Curr Biol, 20(10): 887-894.
    [20] Hua TM, Li GZ, Tang CH, Wang ZH, Chang S. 2009. Enhanced adaptation of visual cortical cells to visual stimulation in aged cats[J]. Neurosci Lett, 451(1): 25-28.
    [21] Hua TM, Li XR, He LH, Zhou YF, Wang YC, Leventhal AG. 2006. Functional degradation of visual cortical cells in old cats[J]. Neurobiol Aging, 27(1): 155-162.
    [22] Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex[J]. J Physiol, 160(1): 106-154.
    [23] Huxlin KR. 2008. Perceptual plasticity in damaged adult visual systems[J]. Vision Res, 48(20): 2154-2166.
    [24] Illig KR, Danilov YP, Ahmad A, Kim CBY, Spear PD. 2000. Functional plasticity in extrastriate visual cortex following neonatal visual cortex damage and monocular enucleation[J]. Brain Research, 882(1-2): 241-250.
    [25] Kaas JH, Krubitzer LA, Chino YM, Langston AL, Polley EH, Blair N, Heinen SJ, Skavenski AA, Schmid LM, Rosa MG, Calford MB, Tolias AS, Ecker AS, Siapas AG, Hoenselaar A, Keliris GA, Logothetis NK. 1990. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina[J]. Science, 248(4952): 229-231.
    [26] Kalil RE, Tong LL, Spear PD. 1991. Thalamic projections to the lateral suprasylvian visual area in cats with neonatal or adult visual cortex damage[J]. J Comp Neurol, 314(3): 512-525.
    [27] Lomber SG, MacNeil MA, Payne BR. 1995. Amplification of thalamic projections to middle suprasylvian cortex following ablation of immature primary visual cortex in the cat[J]. Cereb Cortex, 5(2): 166-191.
    [28] Lomber SG, Payne BR, Cornwell P, Pearson HE. 1993. Capacity of the retinogeniculate pathway to reorganize following ablation of visual cortical areas in developing and mature cats[J]. J Comp Neurol, 338(3): 432-457.
    [29] Mao YT, Hua TM, Pallas SL. 2011. Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas[J]. J Neurophysiol, 105(4): 1558-1573.
    [30] Mohler CW, Wurtz RH. 1977. Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys[J]. J Neurophysiol, 40(1): 74-94.
    [31] Moore T, Rodman HR, Gross CG. 2001. Direction of motion discrimination after early lesions of striate cortex (V1) of the macaque monkey[J]. Proc Natl Acad Sci U S A, 98(1): 325-330.
    [32] Moore T, Rodman HR, Repp AB, Gross CG. 1995. Localization of visual stimuli after striate cortex damage in monkeys: parallels with human blindsight[J]. Proc Natl Acad Sci U S A, 92(18): 8215-8218.
    [33] Ouellette BG, Minville K, Boire D, Ptito M, Casanova C. 2007. Complex motion selectivity in PMLS cortex following early lesions of primary visual cortex in the cat[J]. Vis Neurosci, 24(1): 53-64.
    [34] Payne BR. 2004. Neuroplasticity in the cat’s visual system: test of the role of the expanded retino-geniculo-parietal pathway in behavioral sparing following early lesions of visual cortex[J]. Exp Brain Res, 155(1): 69-80.
    [35] Payne BR, Lomber SG. 1998. Neuroplasticity in the cat’s visual system Origin, termination, expansion, and increased coupling of the retino-geniculo-middle suprasylvian visual pathway following early ablations of areas 17 and 18[J]. Exp Brain Res, 121(3): 334-349.
    [36] Payne BR, Lomber SG, Macneil MA, Cornwell P. 1996. Evidence for greater sight in blindsight following damage of primary visual cortex early in life[J]. Neuropsychologia, 34(8): 741-774.
    [37] Pelli DG. 1997. The VideoToolbox software for visual psychophysics: transforming numbers into movies[J]. Spat Vis, 10(4): 437-442.
    [38] Peng QS, Zhou J, Shi XM, Hua GP, Hua TM. 2011. Effects of urethane on the response properties of visual cortical neurons in young adult and old cats[J]. Zool Res, 32(3): 337-342.
    [39] Poggel DA, Kasten E, Müller-Oehring EM, Bunzenthal U, Sabel BA. 2006. Improving residual vision by attentional cueing in patients with brain lesions[J]. Brain Res, 1097(1): 142-148.
    [40] Rosa MGP, Tweedale R, Elston GN. 2000. Visual responses of neurons in the middle temporal area of new world monkeys after lesions of striate cortex[J]. J Neurosci, 20(14): 5552-5563.
    [41] Rossion B, de Gelder B, Pourtois G, Guérit JM, Weiskrantz L. 2000. Early extrastriate activity without primary visual cortex in humans[J]. Neurosci Lett, 279(1): 25-28.
    [42] Rushmore RJ, Payne BR. 2004. Neuroplasticity after unilateral visual cortex damage in the newborn cat[J]. Behav Brain Res, 153(2): 557-565.
    [43] Rushmore RJ, Rigolo L, Peer AK, Afifi LM, Valero-Cabré A, Payne BR. 2008. Age-dependent sparing of visual function after bilateral lesions of primary visual cortex[J]. Behav Neurosci, 122(6): 1274-1283.
    [44] Schiller PH, Malpeli JG. 1977. The effect of striate cortex cooling on area 18 cells in the monkey[J]. Brain Res, 126(2): 366-369.
    [45] Schmid MC, Mrowka SW, Turchi J, Saunders RC, Wilke M, Peters AJ, Ye FQ, Leopold DA. 2010. Blindsight depends on the lateral geniculate nucleus[J]. Nature, 466(7304): 373-377.
    [46] Schmid MC, Panagiotaropoulos T, Augath MA, Logothetis NK, Smirnakis SM. 2009. Visually driven activation in macaque areas V2 and V3 without input from the primary visual cortex[J]. PLoS One, 4(5): e5527.
    [47] Schoenfeld MA, Noesselt T, Poggel D, Tempelmann C, Hopf JM, Woldorff MG, Heinze H J, Hillyard SA. 2002. Analysis of pathways mediating preserved vision after striate cortex lesions[J]. Ann Neurol, 52(6): 814-824.
    [48] Schoenfeld MA, Noesselt T, Poggel D, Tempelmann C, Hopf JM, Woldorff MG, Heinze HJ, Hillyard SA. 2002. Analysis of pathways mediating preserved vision after striate cortex lesions[J]. Ann Neurol, 52(6): 814-824.
    [49] Shupert C, Cornwell P, Payne B. 1993. Differential sparing of depth perception, orienting, and optokinetic nystagmus after neonatal versus adult lesions of cortical areas 17, 18, and 19 in the cat[J]. Behav Neurosci, 107(4): 633-650.
    [50] Silvanto J, Cowey A, Lavie N, Walsh V. 2007. Making the blindsighted see[J]. Neuropsychologia, 45(14): 3346-3350.
    [51] Smirnakis SM, Brewer AA, Schmid MC, Tolias AS, Schüz A, Augath M, Inhoffen W, Wandell BA, Logothetis NK. 2005. Lack of long-term cortical reorganization after macaque retinal lesions[J]. Nature, 435(7040): 300-307.
    [52] Stoerig P, Cowey A. 1997. Blindsight in man and monkey[J]. Brain, 120(3): 535-559.
    [53] Stoerig P, Cowey A. 2007. Blindsight[J]. Curr Biol, 17(19): R822-R824.
    [54] Tong F. 2003. Primary visual cortex and visual awareness[J]. Nat Rev Neurosci, 4(3): 219-229.
    [55] Weiskrantz L. 2004. Roots of blindsight[J]. Prog Brain Res, 144: 227-241.
    [56] Weiskrantz L, Warrington EK, Sanders MD, Marshall J. 1974. Visual capacity in the hemianopic field following a restricted occipital ablation[J]. Brain, 97(1): 709-728.
    [57] Zeki S, Ffytche DH. 1998. The Riddoch syndrome: insights into the neurobiology of conscious vision[J]. Brain, 121(1): 25-45.
    [58] Zepeda A, Sengpiel F, Guagnelli MA, Vaca L, Arias C. 2004. Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABAA receptor subunits[J]. J Neurosci, 24(8): 1812-1821.
    [59] Zhou J, Shi XM, Peng QS, Hua GP, Hua TM. 2011. Decreased contrast sensitivity of visual cortical cells to visual stimuli accompanies a reduction of intracortical inhibition in old cats[J]. Zool Res, 32(5): 533-539.
  • [1] Jiao-Jiao Wang, Lai-Kun Ma, Wei Liang, Can-Chao Yang.  Responses of cuckoo hosts to alarm signals of different nest intruders in non-nesting areas, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.030
    [2] Zhao-Peng Dong, Qian Wang, Zhen-Jie Zhang, Michael J. Carr, Dong Li, Wei-Feng Shi.  Murine model of acute myocarditis and cerebral cortical neuron edema induced by coxsackievirus B4, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.056
    [3] Zheng-Bo Wang, Dong-Dong Qin, Xin-Tian Hu.  Engrafted newborn neurons could functionally integrate into the host neuronal network, Zoological Research. doi: 10.13918/j.issn.2095-8137.2017.005
    [4] Peng LI, Cai-Hong JIN, San JIANG, Miao-Miao LI, Zi-Lu WANG, Hui ZHU, Cui-Yun CHEN, Tian-Miao HUA.  Effects of surround suppression on response adaptation of V1 neurons to visual stimuli, Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.5.411
    [5] Jing-Hui LI, Fang-Zhou MA, Zai-Zhong WANG, Yi LU, Hai-Ying WU, Xue-Jin SUN, Hua-Lin YU.  A DTI study of the contralateral corticospinal tract modeled through simulated intracranial space-occupying lesions in macaque brain motor areas, Zoological Research. doi: 10.3724/SP.J.1141.2013.02103
    [6] ZHOU Jun, SHI Xia-Ming, PENG Qing-Song, HUA Guo-Peng, HUA Tian-Miao.  Decreased contrast sensitivity of visual cortical cells to visual stimuli accompanies a reduction of intracortical inhibition in old cats, Zoological Research. doi: 10.3724/SP.J.1141.2011.05533
    [7] QI Cui, ZHANG Wei-Wei, WANG Fei, BAO Chao-Fei, WANG Xin-Wei, LI Xiao-Nan, YU Xiao-Q.  Acute effects of IL-1β on sodium current in cortical neurons of rats, Zoological Research. doi: 10.3724/SP.J.1141.2011.03323
    [8] PENG Qing-Song, ZHOU Jun, SHI Xia-Ming, HUA Guo-Peng, HUA Tian-Miao.  Effects of urethane on the response properties of visual cortical neurons in young adult and old cats, Zoological Research. doi: 10.3724/SP.J.1141.2011.03337
    [9] DIAO Jian-gang, XU Jin-wang, LI Gu-zhou, TANG Chuan-hong, HUA Tian-miao.  Age-related Changes of Glu/GABA Expression in the Primary Visual Cortex of Cat, Zoological Research. doi: 10.3724/SP.J.1141.2009.01038
    [10] ZHANG Fei-jun, TONG Chun-fu, ZHANG Heng, LU Jian-jian.  Community Structure of Macrobenthic Fauna in Subtidal Areas of the Yangtze River Estuary in Spring, Zoological Research.
    [11] LIU Zhen-bo , *, NI Shao-xiang, ZHA Yong, GE Yun-jian.  Extracting Soil Moisture Using Remote Sensing Techniques in Three Severe Locust Areas in Huanghua County,Heibei Province, Across Two Periods, Zoological Research.
    [12] DING Ping, JIANG Shi-ren.  Microgeographic Song Variation in the Chinese Bulbul (Pycnonotus sinenesis) in Urban Areas of Hangzhou City, Zoological Research.
    [13] BAO Wei-dong, LI Xiao-jing, SHI Yang.  Comparative Analysis of Food Habits in Carnivores from Three Areas of Beijing, Zoological Research.
    [14] ZHANG Kun, YU Hong-bo, SHOU Tian-de.  Progress in Visual Cortical Research Using Optical Imaging Based on Intrinsic Signals, Zoological Research.
    [15] HUANG Yao-de, HONG Xiu-hua, HE Yu-hong, KANG Chao-sheng, CAI Jing-xia, WANG Jian-hong.  Substance P-Like Immunoreactive Neurons in The Cholinergic Cortical Projection Neuron Areas of The Basal Forebrain in The Cat, Zoological Research.
    [16] MA Shi-lai, Richard B. Harris.  Use of Remote Camera Systems to Document Wildlife Species Presence in Forested Areas of Yunnan, Zoological Research.
    [17] LUO Yu-qun, PENG Ning, YANG Wen-guang, ZHANG Wei-jia.  Studies on The Distribution of The Immunoreactive Neuronal Perikarya and Fibers of The β-Endorphin in The Brains of Tupaia belangeri, Zoological Research.
    [18] LIU Sheng-fa.  Report on Bucephalidae Trematodes With Discription of One New Species From Coastal Areas of Fujian,China, Zoological Research.
    [19] DENG Chao, WANG Bin.  The Response Properties of The Hyperstriatal Visual Neurons to Photic Stimulation in Pigeons, Zoological Research.
    [20] PAN Ru-liang.  Research and Discussion of the Birds'Environments Change With Variation Analysis at Menghal and Another Cultivated Areas in Xishangbanna,Yunnan Province, Zoological Research.
  • 加载中
计量
  • 文章访问数:  1254
  • HTML全文浏览量:  14
  • PDF下载量:  1257
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-08
  • 修回日期:  2012-01-08
  • 刊出日期:  2012-04-22

目录

    /

    返回文章
    返回