留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The primate TRIMCyp fusion genes and mechanism of restricting retroviruses replication

CAO Guang LIU Feng-Liang ZHANG Gao-Hong ZHENG Yong-Tang

CAO Guang, LIU Feng-Liang, ZHANG Gao-Hong, ZHENG Yong-Tang. The primate TRIMCyp fusion genes and mechanism of restricting retroviruses replication. Zoological Research, 2012, 33(1): 99-107. doi: 10.3724/SP.J.1141.2012.01099
Citation: CAO Guang, LIU Feng-Liang, ZHANG Gao-Hong, ZHENG Yong-Tang. The primate TRIMCyp fusion genes and mechanism of restricting retroviruses replication. Zoological Research, 2012, 33(1): 99-107. doi: 10.3724/SP.J.1141.2012.01099

灵长类动物中TRIMCyp 融合基因模式及对逆转录病毒复制的限制作用

doi: 10.3724/SP.J.1141.2012.01099
基金项目: 国家自然科学基金(U0832601; 81172876; 30872317; 30800113); 国家科技重大专项“十一五”计划(2009ZX09501-029); 中国科学院知识创新工程重要方向(KSCX1-YW-10; KSCX2-EW-R-13)
详细信息
  • 中图分类号: Q291; R-332; Q959.848; R512.91

The primate TRIMCyp fusion genes and mechanism of restricting retroviruses replication

  • 摘要: TRIM5-CypA 融合基因(TRIMCyp)是一种独特的TRIM5 基因形式。迄今已发现新大陆猴中包括鹰猴在内的夜猴属所有代表种,以及在北平顶猴、巽他平顶猴、食蟹猴、印度恒河猴和熊猴等旧大陆猴中均存在这种基因融合现象, 但在新大陆猴与旧大陆猴中的TRIMCyp 融合基因的基因融合模式和表达剪接方式不同。新大陆猴TRIMCyp 融合基因是由CypA 假基因的cDNA 序列通过LINE-1 逆转座子介导的逆转座方式插入至TRIM5α 基因的第7 和第8 外显子之间的内含子中形成, 而旧大陆猴TRIMCyp 融合基因则是由CypA 假基因的cDNA 序列以相似的逆转座方式插入至TRIM5 基因的3'非翻译区(untranslated regions, UTR)形成。TRIMCyp 融合基因在不同灵长类动物中的存在比例、基因型、TRIMCyp 融合蛋白的表达以及对逆转录病毒的限制活性均有所差异。鹰猴和平顶猴的TRIMCyp 融合基因研究较多, 鹰猴TRIMCyp 融合蛋白可能以与TRIM5α 相似机制限制HIV-1 的感染, 而平顶猴TRIMCyp 融合蛋白则丧失了限制HIV-1 的作用。这两个功能截然不同的融合基因为TRIM5α 作用机制研究提供了难得的实验材料, 也为建立HIV-1 感染的新型灵长类动物艾滋病模型奠定了科学依据。该文综述了TRIMCyp 融合基因在灵长类动物中的分布、存在形式及其限制逆转录病毒复制的作用机制等方面的研究情况。
  • [1] Aiken C, Joyce S. 2011. Immunology: TRIM5 does double duty
    [J]. Nature, 472(7343): 305-306.
    [3] Anderson JL, Campbell EM, Wu XL, Vandegraaff N, Engelman A, Hope TJ. 2006. Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins
    [J]. J Virol, 80(19): 9754-9760.
    [5] Bieniasz PD. 2004. Intrinsic immunity: a front-line defense against viral attack
    [J]. Nat Immunol, 5(11): 1109-1115.
    [7] Brennan G, Kozyrev Y, Kodama T, Hu SL. 2007. Novel TRIM5 isoforms expressed by Macaca nemestrina
    [J]. J Virol, 81(22): 12210-12217.
    [9] Brennan G, Kozyrev Y, Hu SL. 2008. TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis
    [J]. Proc Natl Acad Sci USA, 105(9): 3569-3574.
    [11] Cao G, Nie WH, Liu FL, Kuang YQ, Wang JH, Su WT, Zheng YT. 2011. Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis
    [J]. Zool Res, 32(1): 40-49.
    [13] [曹 光, 佴文惠, 刘丰 亮, 况轶群, 王金焕, 苏伟婷, 郑永唐. 2011. 熊猴存在TRIM5/ TRIMCyp 杂合子基因型. 动物学研究, 32(1): 40-49.]
    [14] Chatterji U, Bobardt MD, Stanfield R, Ptak R G, Pallansch LA, Ward PA, Jones MJ, Stoddart CA, Scalfaro P, Dumont JM, Besseghir K, Rosenwirth B, Gallay PA. 2005. Naturally occurring capsid substitutions render HIV-1 cyclophilin A independent in human cells and TRIM-cyclophilin-resistant in Owl monkey cells
    [J]. J Biol Chem, 280(48): 40293-40300.
    [16] Diaz-Griffero F, Vandegraaff N, Li Y, McGee-Estrada K, Stremlau M, Welikala S, Si ZH, Engelman A, Sodroski J. 2006. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1
    [J]. Virology, 351(2): 404-419.
    [18] Diaz-Griffero F, Kar A, Perron M, Xiang SH, Javanbakht H, Li X, Sodroski J. 2007. Modulation of retroviral restriction and proteasome inhibitorresistant turnover by changes in the TRIM5α B-box 2 domain
    [J]. J Virol, 81(19): 10362-10378.
    [20] Diaz-Griffero F, Qin XR, Hayashi F, Kigawa T, Finzi A, Sarnak Z, Lienlaf M, Yokoyama S, Sodroski J. 2009. A B-box 2 surface patch important for TRIM5α self-association, capsid binding avidity, and retrovirus restriction
    [J]. J Virol, 83(20): 10737-10751.
    [22] Dietrich EA, Brennan G, Ferguson B, Wiseman RW, O'Connor D, Hu SL. 2011. Variable prevalence and functional diversity of the antiretroviral restriction factor TRIMCyp in Macaca fascicularis
    [J]. J Virol, 85(19): 9956-9963.
    [24] Dietrich EA, Jones-Engel L, Hu SL. 2010. Evolution of the antiretroviral restriction factor TRIMCyp in Old World primates
    [J]. PLoS One, 5(11): e14019.
    [26] Franke EK, Yuan HE, Luban J. 1994. Specific incorporation of cyclophilin A into HIV-1 virions
    [J]. Nature, 372(6504): 359-362.
    [28] Gilbert PB, McKeague IW, Eisen G, Mullins C, Guéye-NDiaye A, Mboup S, Kanki PJ. 2003. Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort study in Senegal
    [J]. Stat Med, 22(4): 573-593.
    [30] Gippoliti S. 2001.Notes on the taxonomy of Macaca nemestrina leonina blyth, 1863 (Primates: Cercopithecidae)
    [J]. Hystrix It J Mamm, 12(1): 51-54.
    [32] Goff SP. 2004. Retrovirus restriction factors
    [J]. Mol Cell, 16(6): 849-859.
    [34] Groves CP. 2001. Primate Taxonomy
    [M]. Washington, DC, USA: Smithsonian Institution Press, 222-224.
    [36] Hatziioannou T, Perez-Caballero D, Cowan S, Bieniasz PD. 2005. Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells
    [J]. J Virol, 79(1): 176-183.
    [38] Hofmann W, Schubert D, LaBonte J, Munson L, Gibson S, Scammell J, Ferrigno P, Sodroski J. 1999. Species-specific, postentry barriers to primate immunodeficiency virus infection
    [J]. J Virol, 73(12): 10020-10028.
    [40] Javanbakht H, Diaz-Griffero F, Yuan W, Yeung DF, Li X, Song B, Sodroski J. 2007. The ability of multimerized cyclophilin A to restrict retrovirus infection
    [J]. Virology, 367(1): 19-29.
    [42] Kuang YQ, Tang X, Liu FL, Jiang XL, Zhang YP, Gao GX, Zheng YT. 2009. Genotyping of TRIM5 locus in northern pig-tailed macaques (Macaca leonina), a primate species susceptible to human immunodeficiency virus type 1 infection
    [J]. Retrovirology, 6: 58.
    [44] Li QQ, Zhang YP. 2005. Phylogenetic relationships of the macaques (Cercopithecidae: Macaca), inferred from mitochondrial DNA sequences
    [J]. Biochem Genet, 43(7-8): 375-386.
    [46] Liao CH, Kuang YQ, Liu HL, Zheng YT, Su B. 2007. A novel fusion gene, TRIM5-Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection
    [J]. AIDS, 21(Suppl 8): S19-S26.
    [48] Lilly F. 1967. Susceptibility to two strains of Friend leukemia virus in mice
    [J]. Science, 155(3761): 461-462.
    [50] Lin TY, Emerman M. 2006. Cyclophilin A interacts with diverse lentiviral capsids
    [J]. Retrovirology, 3: 70.
    [52] Luban J. 2007. Cyclophilin A, TRIM5, and resistance to human immunodeficiency virus type 1 infection
    [J]. J Virol, 81(3): 1054-1061.
    [54] Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP. 1993. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B
    [J]. Cell, 73(6): 1067-1078.
    [56] Nepveu-Traversy ME, Bérubé J, Berthoux L. 2009. TRIM5alpha and TRIMCyp form apparent hexamers and their multimeric state is not affected by exposure to restriction-sensitive viruses or by treatment with pharmacological inhibitors
    [J]. Retrovirology, 6: 100.
    [58] Newman RM, Hall L, Kirmaier A, Pozzi LA, Pery E, Farzan M, O'Neil SP, Johnson W. 2008. Evolution of a TRIM5-CypA splice isoform in old world monkeys
    [J]. PLoS Pathog, 4(2): e1000003.
    [60] Nisole S, Lynch C, Stoye JP, Yap MW. 2004. A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1
    [J]. Proc Natl Acad Sci USA, 101(36): 13324-13328.
    [62] Perez-Caballero D, Hatziioannou T, Zhang FW, Cowan S, Bieniasz PD. 2005. Restriction of human immunodeficiency virus type 1 by TRIM-CypA occurs with rapid kinetics and independently of cytoplasmic bodies, ubiquitin, and proteasome activity
    [J]. J Virol, 79(24): 15567-15572.
    [64] Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, Reinhard C, Santoni FA, Uchil P D, Chatel L, Bisiaux A, Albert ML, Strambio-De-Castillia C, Mothes W, Pizzato M, Grutter MG, Luban J. 2011. TRIM5 is an innate immune sensor for the retrovirus capsid lattice
    [J]. Nature, 472(7343): 361-365.
    [66] Price AJ, Marzetta F, Lammers M, Ylinen LM, Schaller T, Wilson S J, Towers GJ, James LC. 2009. Active site remodeling switches HIV specificity of antiretroviral TRIMCyp
    [J]. Nat Struct Mol Biol, 16(10): 1036-1042.
    [68] Reeves JD, Doms RW. 2002. Human immunodeficiency virus type 2
    [J]. J Gen Virol, 83(6): 1253-1265.
    [70] Ribeiro IP, Menezes AN, Moreira MA, Bonvicino CR, Seuanez HN, Soares MA. 2005. Evolution of cyclophilin A and TRIMCyp retrotransposition in New World primates
    [J]. J Virol, 79(23): 14998-15003.
    [72] Rosenblum LL, Supriatna J, Melnick DJ. 1997. Phylogeographic analysis of pig-tail macaque populations (Macaca nemestrina) inferred from mitochondrial DNA
    [J]. Am J Phys Anthropol, 104(1): 35-45.
    [74] Sastri J, Campbell EM. 2011. Recent insights into the mechanism and consequences of TRIM5α retroviral restriction
    [J]. AIDS Res Hum Retroviruses, 27(3): 231-238.
    [76] Sawyer SL, Wu LI, Emerman M, Malik HS. 2005. Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain
    [J]. Proc Natl Acad Sci USA, 102(8): 2832-2837.
    [78] Sayah DM, Sokolskaja E, Berthoux L, Luban J. 2004. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1
    [J]. Nature, 430(6999): 569-573.
    [80] Schaller T, Hué S, Towers GJ. 2007. An active TRIM5 protein in rabbits indicates a common antiviral ancestor for mammalian TRIM5 proteins
    [J]. J Virol, 81(21): 11713-11721.
    [82] Si ZH, Vandegraaff N, O'Huigin C, Song B, Yuan W, Xu C, Perron M, Li X, Marasco WA, Engelman A, Dean M, Sodroski J. 2006. Evolution of a cytoplasmic tripartite motif (TRIM) protein in cows that restricts retroviral infection
    [J]. Proc Natl Acad Sci USA, 103(19): 7454-7459.
    [84] Song B, Gold B, O'Huigin C, Javanbakht H, Li X, Stremlau M, Winkler C, Dean M, Sodroski J. 2005. The B30.2 (SPRY) domain of the retroviral restriction factor TRIM5α exhibits lineage-specific length and sequence variation in primates
    [J]. J Virol, 79(10): 6111-6121.
    [86] Steeves R, Lilly F. 1977. Interactions between host and viral genomes in mouse leukemia
    [J]. Annu Rev Genet, 11(1): 277-296.
    [88] Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. 2004. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys
    [J]. Nature, 427(6977): 848-853.
    [90] Tang X, Kuang YQ, Zheng YT. 2009. Research advance of TRIM5α on structure and restriction mechanism to HIV-1 replication
    [J]. Chin J Virol, 25(2): 148-153.
    [92] [汤霞, 况轶群, 郑永唐. 2009. TRIM5α 分子结 构和限制 HIV-1 复制机制的研究进展. 病毒学报, 25(2): 148-153.]
    [93] Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, Gottlinger HG. 1994. Functional association of cyclophilin A with HIV-1 virions
    [J]. Nature, 372(6504): 363-365.
    [95] Towers GJ. 2007. The control of viral infection by tripartite motif proteins and cyclophilin A
    [J]. Retrovirology, 4: 40.
    [97] Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD. 2003. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors
    [J]. Nat Med, 9(9): 1138-1143.
    [99] Virgen CA, Kratovac Z, Bieniasz PD, Hatziioannou T. 2008. Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species
    [J]. Proc Natl Acad Sci USA, 105(9): 3563-3568.
    [101] Wilson SJ, Webb BL, Ylinen LM, Verschoor E, Heeney JL, Towers GJ. 2008. Independent evolution of an antiviral TRIMCyp in rhesus macaques
    [J]. Proc Natl Acad Sci USA, 105(9): 3557-3562.
    [103] Yap MW, Dodding MP, Stoye JP. 2006. Trim-cyclophilin A fusion proteins can restrict human immunodeficiency virus type 1 infection at two distinct phases in the viral life cycle
    [J]. J Virol, 80(8): 4061-4067.
    [105] Ylinen LMJ, Keckesova Z, Webb BL, Gifford RJ, Smith TP, Towers GJ. 2006. Isolation of an active Lv1 gene from cattle indicates that tripartite motif protein-mediated innate immunity to retroviral infection is widespread among mammals
    [J]. J Virol, 80(15): 7332-7338.
    [107] Ylinen LMJ, Price AJ, Rasaiyaah J, Hue S, Rose NJ, Marzetta F, James LC, Towers GJ. 2010. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity
    [J]. PLoS Pathog, 6(8): e1001062.
    [109] Zhang FW, Hatziioannou T, Perez-Caballero D, Derse D, Bieniasz PD. 2006. Antiretroviral potential of human tripartite motif-5 and related proteins
    [J]. Virology, 353(2): 396-409.
  • [1] Tian-Zhang Song, Ming-Xu Zhang, Yu-Jie Xia, Yu Xiao, Wei Pang, Yong-Tang Zheng.  Parasites may exit immunocompromised northern pig-tailed macaques (Macaca leonina) infected with SIVmac239, Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.015
    [2] Gary Wong, Xiang-Guo Qiu.  Type I interferon receptor knockout mice as models for infection of highly pathogenic viruses with outbreak potential, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.052
    [3] Wei-Na Guo, Bin Zhu, Ling Ai, Dong-Liang Yang, Bao-Ju Wang.   Animal models for the study of hepatitis B virus infection, Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.013
    [4] Gary Wong, Wen-Guang Cao, Shi-Hua He, Zi-Rui Zhang, Wen-Jun Zhu, Estella Moffat, Hideki Ebihara, Carissa Embury-Hyatt, Xiang-Guo Qiu.  Development and characterization of a guinea pig model for Marburg virus, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.054
    [5] Yong-Gang Yao.  Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.032
    [6] Ji Xiao, Rong Liu, Ce-Shi Chen.  Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.033
    [7] Ming GUO, Wen-Zhe HO.  Animal models to study Mycobacterium tuberculosis and HIV co-infection, Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.3.163
    [8] Ai-Hua LEI, Wei PANG, Gao-Hong ZHANG, Yong-Tang ZHENG.  Use and research of pigtailed macaques in nonhuman primate HIV/AIDS models, Zoological Research. doi: 10.3724/SP.J.1141.2013.02077
    [9] WANG Wen-Guang, HUANG Xiao-Yan, XU Juan, SUN Xiao-Mei, DAI Jie-Jie, LI Qi-Han.  Experimental studies on infant Tupaia belangeri chineses with EV71 infection, Zoological Research. doi: 10.3724/SP.J.1141.2012.01007
    [10] GUO Li-Yun, WEI Jing-Kuan, YANG Shang-Chuan, WANG Zheng-Bo.  Glaucoma model for stem cell transplantation research in New Zealand white rabbits, Zoological Research. doi: 10.3724/SP.J.1141.2012.02225
    [11] ZHU Hui-Fang, ZHANG Yuan-Xu, ZHAO Xu-Dong.  Animal models of human glioma: the progress of application and investigation, Zoological Research. doi: 10.3724/SP.J.1141.2012.03337
    [12] LI Yao, DAI Jie-Jie, SUN Xiao-Mei, XIA Xue-Shan.  Progress in studies on HCV receptor of Tupaia as a potential hepatitis C animal model, Zoological Research. doi: 10.3724/SP.J.1141.2011.01097
    [13] CAO Guang, NIE Wen-Hui, LIU Feng-Liang, KUANG Yi-Qun, WANG Jin-Huan, SU Wei-Ting, ZH Y.  Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis, Zoological Research. doi: 10.3724/SP.J.1141.2011.01040
    [14] XIA Hou-JUN, ZHANG Gao-Hong, ZHENG Yong-Tang.  Roles of Dendritic Cell in Disease Progression of AIDS Primate Models, Zoological Research. doi: 10.3724/SP.J.1141.2010.01057
    [15] ZHU Lin, ZHANG Gao-Hong, ZHENG Yong-Tang.  Application Studies of Animal Models in Evaluating Safety and Efficacy of HIV-1 Microbicides, Zoological Research. doi: 10.3724/SP.J.1141.2010.01066
    [16] HANG Gao-hong, LI Ming-hua, ZHENG Yong-tang.  Application of AIDS Macaque Animal Model in HIV Vaccine Research, Zoological Research.
    [17] ZHANG Gao-hong, CHEN Ya-li, TANG Hong, ZHENG Yong-tang.  Humanized SCID Mouse:A Small Animal Model for HIV Research, Zoological Research.
    [18] WANG Jian-hua, WANG Yuan-yuan, OUYANG Dong-yun, ZHENG Yong-tang.  Apoptosis in Human Immunodeficiency Virus Infection, Zoological Research.
    [19] GUO Ren, CHEN Shu-fan, LUO Qi-sheng, WANG Qing-ling, YI Hong-kun, ZHAN Qiong-fen.  Transgenic Mice as A Model For Neurovirulence Test of Live Poliomyelitis Vaccines, Zoological Research.
    [20] HUANG Hai, BEN Kun-long, ZHENG Yong-tang.  Current Status in Research on Animal Models For human Aquired Immunodeficiency Syndrome, Zoological Research.
  • 加载中
计量
  • 文章访问数:  1804
  • HTML全文浏览量:  16
  • PDF下载量:  2045
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-28
  • 修回日期:  2011-12-29
  • 刊出日期:  2012-02-22

目录

    /

    返回文章
    返回