留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Blood transcriptome analysis reveals gene expression features of breast-feeding rhesus macaque (Macaca mulatta) infants

Yue Lan Jiao Wang Qiao Yang Rui-Xiang Tang Min Zhou Guang-Lun Lei Jing Li Liang Zhang Bi-Song Yue Zhen-Xin Fan

Yue Lan, Jiao Wang, Qiao Yang, Rui-Xiang Tang, Min Zhou, Guang-Lun Lei, Jing Li, Liang Zhang, Bi-Song Yue, Zhen-Xin Fan. Blood transcriptome analysis reveals gene expression features of breast-feeding rhesus macaque (Macaca mulatta) infants. Zoological Research, 2020, 41(4): 431-436. doi: 10.24272/j.issn.2095-8137.2020.044
Citation: Yue Lan, Jiao Wang, Qiao Yang, Rui-Xiang Tang, Min Zhou, Guang-Lun Lei, Jing Li, Liang Zhang, Bi-Song Yue, Zhen-Xin Fan. Blood transcriptome analysis reveals gene expression features of breast-feeding rhesus macaque (Macaca mulatta) infants. Zoological Research, 2020, 41(4): 431-436. doi: 10.24272/j.issn.2095-8137.2020.044

血液转录组分析揭示母乳喂养猕猴婴猴的基因表达特征

doi: 10.24272/j.issn.2095-8137.2020.044

Blood transcriptome analysis reveals gene expression features of breast-feeding rhesus macaque (Macaca mulatta) infants

Funds: This work was supported by the Sichuan Application Foundation Project (2020YJ0303) and Chengdu Giant Panda Breeding Research Foundation (CPF2017-19)
More Information
    Corresponding author: E-mail: zxfan@scu.edu.cn
  • #Authors contributed equally to this work
  • 摘要:

    在母乳喂养期间,婴儿会经历快速生长发育阶段和显著的生理变化。然而,关于母乳喂养期婴儿的基因表达特征和性别特异性基因表达的研究却很少。在这项研究中,我们对16只母乳喂养的猕猴婴猴和他们各自尚在哺乳期的母猴的共32个血液转录组进行了测序分析。我们鉴定到了218个婴猴与母猴之间的差异表达基因(DEG),其中91个DEG在婴猴组中表达上调,127个DEG在婴猴组中表达下调。通过对婴猴的上调DEG和独有的hub基因的功能富集分析,我们发现它们主要分布在免疫、生长和发育等方面。蛋白质互作分析还发现婴猴中的关键基因主要也是与生长发育和免疫相关。此外,我们还在雌雄婴猴之间鉴定到了23个DEG,其中两个DEG位于X染色体,11个位于Y染色体。TMF1监管核内蛋白1 (Trnp1)在哺乳动物中对大脑皮层发育至关重要,该基因在雌性婴猴中显著表达上调。总的来说,我们的研究为非人灵长类哺乳期婴猴的基因表达特征提供了新的见解,并揭示了这些婴猴之间的性别特异性基因表达。

    #Authors contributed equally to this work
  • Figure  1.  Heat map and enrichment analysis of DEGs and weighted gene co-expression network analysis (WGCNA)

    A: Heat map plot of DEGs using gene expression values normalized by Deseq2. Expression values of 32 individuals are presented after being centered and scaled in the row direction. Each column represents a specimen and each row represents a gene. Red indicates up-regulated genes and blue indicates down-regulated genes. B: Bar plot of GO terms of up-regulated DEGs in infants. C: In total, 11 modules were identified by WGCNA. D: Protein-protein interaction network of DEGs and hub genes in infants. Size and gradient color of node are adjusted by degree, and thickness and gradient color of edge are adjusted by combined score. Low values are indicated by dark colors and small sizes. DEGs are circled in red.

    Table  1.   The DEGs between female and male infants

    Gene IDGene nameChromosomeLog2 fold changePadj
    ENSMMUG00000000192MAP7D2chrX2.840 2926.79E–25
    ENSMMUG00000041274ENSMMUG00000041274chrY–22.469 84.23E–05
    ENSMMUG00000045017KDM5DchrY–13.2762.57E–70
    ENSMMUG00000046378ZFYchrY–12.224 46.01E–56
    ENSMMUG00000054467ENSMMUG00000054467chrY–7.683 346.10E–10
    ENSMMUG00000042046C14H11orf87chr147.377 8260.002 683
    ENSMMUG00000045991USP9YchrY–13.284 91.72E–69
    ENSMMUG00000038182UTYchrY–12.551 69.93E–62
    ENSMMUG00000059200ENSMMUG00000059200chr136.556 070.004 637
    ENSMMUG00000043966DDX3YchrY–14.122 41.06E–78
    ENSMMUG00000049458ENSMMUG00000049458chrY–9.074 964.46E–26
    ENSMMUG00000060008LY6Dchr84.700 8070.028 138 7
    ENSMMUG00000049951ENSMMUG00000049951chrX9.939 9432.84E–34
    ENSMMUG00000043715EIF1AYchrY–11.388 66.20E–15
    ENSMMUG00000056331PRKXchrX–4.430 092.69E–20
    ENSMMUG00000021031TRNP1chr14.054 1050.022 402 2
    ENSMMUG00000061378ENSMMUG00000061378chrY–7.757 772.89E–12
    ENSMMUG00000038824RPS4Y2chrY–13.91471.84E–77
    ENSMMUG00000046495TBL1YchrY–10.186 42.25E–05
    ENSMMUG00000055339ENSMMUG00000055339chr1626.352 571.62E–08
    ENSMMUG00000038331RPS4Y1chrY–17.108 11.73E–117
    ENSMMUG00000055357ENSMMUG00000055357chr10–21.304 40.000 173 9
    ENSMMUG00000049104CYorf15AchrY–10.877 82.01E–44
    下载: 导出CSV
  • [1] Chella Krishnan K, Mehrabian M, Lusis AJ. 2018. Sex differences in metabolism and cardiometabolic disorders. Current Opinion in Lipidology, 29(5): 404−410. doi:  10.1097/MOL.0000000000000536
    [2] Collaer ML, Hines M. 1995. Human behavioral sex differences: a role for gonadal hormones during early development?. Psychological Bulletin, 118(1): 55−107. doi:  10.1037/0033-2909.118.1.55
    [3] El Hassouni B, Sarkisjan D, Vos JC, Giovannetti E, Peters GJ. 2019. Targeting the Ribosome Biogenesis Key Molecule Fibrillarin to Avoid Chemoresistance. Current Medicinal Chemistry, 26(33): 6020−6032. doi:  10.2174/0929867326666181203133332
    [4] Feldman R, Eidelman AI. 2003. Direct and indirect effects of breast milk on the neurobehavioral and cognitive development of premature infants. Developmental Psychobiology, 43(2): 109−119. doi:  10.1002/dev.10126
    [5] Genecards. 2020. TRNP1 gene. https://www.genecards.org/cgi-bin/carddisp.pl?gene=TRNP1#protein_expression.
    [6] Gershoni M, Pietrokovski S. 2017. The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biology, 15(1): 7. doi:  10.1186/s12915-017-0352-z
    [7] Giedd JN, Castellanos FX, Rajapakse JC, Vaituzis AC, Rapoport JL. 1997. Sexual dimorphism of the developing human brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21(8): 1185−1201. doi:  10.1016/S0278-5846(97)00158-9
    [8] Gu ZG, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics, 32(18): 2847−2849. doi:  10.1093/bioinformatics/btw313
    [9] Horwitz MS, Corey SJ, Grimes HL, Tidwell T. 2013. ELANE mutations in cyclic and severe congenital neutropenia: genetics and pathophysiology. Hematology/Oncology Clinics of North America, 27(1): 19−41. doi:  10.1016/j.hoc.2012.10.004
    [10] Jensen DE, Black AR, Swick AG, Azizkhan JC. 1997. Distinct roles for Sp1 and E2F sites in the growth/cell cycle regulation of the DHFR promoter. Journal of Cellular Biochemistry, 67(1): 24−31. doi:  10.1002/(SICI)1097-4644(19971001)67:1<24::AID-JCB3>3.0.CO;2-Y
    [11] Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4): 357−360. doi:  10.1038/nmeth.3317
    [12] Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. 2010. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacological Reviews, 62(4): 726−759. doi:  10.1124/pr.110.002733
    [13] Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9: 559. doi:  10.1186/1471-2105-9-559
    [14] Lönnerdal B. 2012. Preclinical assessment of infant formula. Annals of Nutrition and Metabolism, 60(3): 196−199. doi:  10.1159/000338209
    [15] Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12): 550. doi:  10.1186/s13059-014-0550-8
    [16] NCBI. 2020. TRNP1 TMF1 regulated nuclear protein 1 [Homo sapiens (human) ]. https://www.ncbi.nlm.nih.gov/gene/388610#gene-expression.
    [17] Olivier M, Hollstein M, Hainaut P. 2010. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor Perspectives in Biology, 2(1): a001008.
    [18] Patel RK, Jain M. 2012. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One, 7(2): e30619. doi:  10.1371/journal.pone.0030619
    [19] Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3): 290−295. doi:  10.1038/nbt.3122
    [20] Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J. 2019. g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Research, 47(W1): W191−W198. doi:  10.1093/nar/gkz369
    [21] Rhesus Macaque Genome Sequencing and Analysis Consortium, Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausberg RL, Venter JC, Wilson RK, Batzer MA, Bustamante CD, Eichler EE, Hahn MW, Hardison RC, Makova KD, Miller W, Milosavljevic A, Palermo RE, Siepel A, Sikela JM, Attaway T, Bell S, Bernard KE, Buhay CJ, Chandrabose MN, Dao M, Davis C, Delehaunty KD, Ding Y, Dinh HH, Dugan-Rocha S, Fulton LA, Gabisi RA, Garner TT, Godfrey J, Hawes AC, Hernandez J, Hines H, Holder M, Hume J, Jhangiani SN, Joshi V, Khan ZM, Kirkness EF, Cree A, Fowler RG, Lee S, Lewis LR, Li ZW, Liu YS, Moore SM, Muzny D, Nazareth LV, Ngo DN, Okwuonu GO, Pai G, Parker D, Paul HA, Pfannkoch C, Pohl CS, Rogers YH, Ruiz SJ, Sabo A, Santibanez J, Schneider BW, Smith SM, Sodergren E, Svatek AF, Utterback TR, Vattathil S, Warren H, White CS, Chinwalla AT, Feng YC, Halpern AL, Hillier LW, Huang XQ, Minx P, Nelson JO, Pepin KH, Qin X, Sutton GG, Venter E, Walenz BP, Wallis JW, Worley KC, Yang SP, Jones SM, Marra MA, Rocchi M, Schein JE, Baertsch R, Clarke L, Csürös M, Glasscock J, Harris RA, Havlak P, Jackson AR, Jiang HY, Liu Y, Messina DN, Shen YF, Song HXZ, Wylie T, Zhang L, Birney E, Han K, Konkel MK, Lee J, Smit AFA, Ullmer B, Wang H, Xing JC, Burhans R, Cheng Z, Karro JE, Ma J, Raney B, She XW, Cox MJ, Demuth JP, Dumas LJ, Han SG, Hopkins J, Karimpour-Fard A, Kim YH, Pollack JR, Vinar T, Addo-Quaye C, Degenhardt J, Denby A, Hubisz MJ, Indap A, Kosiol C, Lahn BT, Lawson HA, Marklein A, Nielsen R, Vallender EJ, Clark AG, Ferguson B, Hernandez RD, Hirani K, Kehrer-Sawatzki H, Kolb J, Patil S, Pu LL, Ren YR, Smith DG, Wheeler DA, Schenck I, Ball EV, Chen R, Cooper DN, Giardine B, Hsu F, Kent WJ, Lesk A, Nelson DL, O'Brien WE, Prüfer K, Stenson PD, Wallace JC, Ke H, Liu XM, Wang P, Xiang AP, Yang F, Barber GP, Haussler D, Karolchik D, Kern AD, Kuhn RM, Smith KE, Zwieg AS. 2007. Evolutionary and biomedical insights from the rhesus macaque genome. Science, 316(5822): 222−234. doi:  10.1126/science.1139247
    [22] Rogier EW, Frantz AL, Bruno MEC, Wedlund L, Cohen DA, Stromberg AJ, Kaetzel CS. 2014. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proceedings of the National Academy of Sciences of the United States of America, 111(8): 3074−3079. doi:  10.1073/pnas.1315792111
    [23] Ronen D, Benvenisty N. 2014. Sex-dependent gene expression in human pluripotent stem cells. Cell Reports, 8(4): 923−932. doi:  10.1016/j.celrep.2014.07.013
    [24] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11): 2498−2504. doi:  10.1101/gr.1239303
    [25] Shoji H, Shimizu T. 2019. Effect of human breast milk on biological metabolism in infants. Pediatrics International, 61(1): 6−15. doi:  10.1111/ped.13693
    [26] Stahl R, Walcher T, De Juan Romero C, Pilz GA, Cappello S, Irmler M, Sanz-Aquela JM, Beckers J, Blum R, Borrell V, Gotz M. 2013. Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell, 153(3): 535−549. doi:  10.1016/j.cell.2013.03.027
    [27] Ståhle-Bäckdahl M, Sandstedt B, Bruce K, Lindahl A, Jiménez MG, Vega JA, López-Otín C. 1997. Collagenase-3 (MMP-13) is expressed during human fetal ossification and re-expressed in postnatal bone remodeling and in rheumatoid arthritis. Laboratory Investigation, 76(5): 717−728.
    [28] Strezoska Z, Pestov DG, Lau LF. 2000. Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5.8S RRNA processing and 60S ribosome biogenesis. Molecular and Cellular Biology, 20(15): 5516−5528. doi:  10.1128/MCB.20.15.5516-5528.2000
    [29] Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C. 2017. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Research, 45(D1): D362−D368. doi:  10.1093/nar/gkw937
    [30] Toriseva M, Laato M, Carpén O, Ruohonen ST, Savontaus E, Inada M, Krane SM, Kahari VM. 2012. MMP-13 regulates growth of wound granulation tissue and modulates gene expression signatures involved in inflammation, proteolysis, and cell viability. PLoS One, 7(8): e42596. doi:  10.1371/journal.pone.0042596
    [31] Tower J. 2017. Sex-specific gene expression and life span regulation. Trends in Endocrinology & Metabolism, 28(10): 735−747.
    [32] Villa A, Gelosa P, Castiglioni L, Cimino M, Rizzi N, Pepe G, Lolli F, Marcello E, Sironi L, Vegeto E, Maggi A. 2018. Sex-specific features of microglia from adult mice. Cell Reports, 23(12): 3501−3511. doi:  10.1016/j.celrep.2018.05.048
    [33] Wang MN, Sampson ER, Jin HT, Li J, Ke QH, Im HJ, Chen D. 2013. MMP13 is a critical target gene during the progression of osteoarthritis. Arthritis Research & Therapy, 15(1): R5.
    [34] Xu XR, Gammon MD, Wetmur JG, Rao ML, Gaudet MM, Teitelbaum SL, Britton JA, Neugut AI, Santella RM, Chen J. 2007. A functional 19-base pair deletion polymorphism of dihydrofolate reductase (DHFR) and risk of breast cancer in multivitamin users. The American Journal of Clinical Nutrition, 85(4): 1098−1102. doi:  10.1093/ajcn/85.4.1098
  • [1] Chao-Chao Yan, Xin-Shang Zhang, Liang Zhou, Qiao Yang, Min Zhou, Lin-Wan Zhang, Jin-Chuan Xing, Zhi-Feng Yan, Megan Price, Jing Li, Bi-Song Yue, Zhen-Xin Fan.  Effects of aging on gene expression in blood of captive Tibetan macaques (Macaca thibetana) and comparisons with expression in humans, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.092
    [2] Jing WANG, Guang LI, Guang-Hui QIAN, Jun-Hao HUA, Yi-Quan WANG.  Expression analysis of eight amphioxus genes involved in the Wnt/β-catenin signaling pathway, Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.3.136
    [3] Ya-Fei DUAN, Ping LIU, Ji-Tao LI, Jian LI, Bao-Quan GAO, Ping CHEN.  Cloning and expression analysis of Cathepsin L cDNA of Exopalaemon carinicauda, Zoological Research. doi: 10.3724/SP.J.1141.2013.01039
    [4] ZHANG Hao, FAN Chun-Xin, SONG Jia-Kun.  Cloning and expression of Tbx3 gene in Siberian sturgeon, Acipenser baerii, Zoological Research. doi: 10.3724/SP.J.1141.2012.02158
    [5] ZHANG Qing-Yu, FAN Xiao-Na, CAO Yi.  Expression of cannabinoid and opioid receptors in nervous as well as immune systems of Macaca mulatta and Tupaia belangeri, Zoological Research. doi: 10.3724/SP.J.1141.2011.01031
    [6] JIN Li-Sha, HAO Xiang-Fen, PENG Bai-Lu, ZHANG Yan-Chun, WAN Yu-Ling, JI Fang, XIA Ji-.  Differential expression of six obesity-related genes with different disease phases of T2DM in cynomolgus monkey, Zoological Research. doi: 10.3724/SP.J.1141.2011.01050
    [7] ZHANG Xiu-Juan, LI Xue-Jia, XIA Ji-Liang, YAN Sun-Xing, JI Fang, ZHANG Yan-Chun.  Expression status of diabetes-associated genes in middle and aged cynomolgus monkeys, Zoological Research. doi: 10.3724/SP.J.1141.2011.03300
    [8] SHEN Wang, YE Mao, SHI Ge, WANG Ri-Xin.  cDNA Cloning, Characterization and mRNA Expression of a Profilin from the Swimming Crab Portunus trituberculatus, Zoological Research. doi: 10.3724/SP.J.1141.2010.0326
    [9] ZHOU Rui-Xue MENG Tao, Meng Hai-Bo, HENG Dun-Xue BIN Shi-Yu CHENG Jia, FU Gui-Hong, CHU Wu-Ying, *, ZHANG Jian-She , *Selection of Reference Genes in Transcription Analysis of Gene Expression of the Mandarin Fish, Siniperca chuasti, Zoological Research. doi: 10.3724/SP.J.1141.2010.02141
    [10] ZHANG Yu-jun, MAO Bing-yu.  Developmental Expression of an Amphioxus (Branchiostoma belcheri) Gene Encoding a GATA Transcription Factor, Zoological Research. doi: 10.3724/SP.J.1141.2009.02137
    [11] YANG Xiu-qin, GUO Li-juan, MA Jian-zhang, LIU Di.  Cloning, Expression and Variation Analysis of the Wild Boar CAPN7 Gene, Zoological Research. doi: 10.3724/SP.J.1141.2009.05503
    [12] WANG Jing-jing, NIE Liu-wang, JIA Rui, WANG Ning.  cDNA Cloning and Expression Analysis of Mest Gene in the Bufo gargarizans, Zoological Research. doi: 10.3724/SP.J.1141.2009.04369
    [13] LIU Chang-qing, LIU Shuai, BAO A-dong, LU Tao-feng, WU Hong-mei, ZHANG Hong-hai.  Molecular Clone, Expression, Structure and Function Study of Beijing Fatty Chicken ADSL Gene, Zoological Research.
    [14] LIAO Wan-qin, LIANG Xu-fang *, WANG Lin, MA Xu, FANG Ling, LI Gui-sheng.  cDNA Sequence Cloning and Tissue Expression of Uncoupling Protein 2 of Silver Carp (Hypophthalmichthys molitrix), Zoological Research.
    [15] CHEN Yun-gui, YE Ding, SONG Ping, LV Dau-yuan, GUI Jian-fang.  Expression and Distributing of vasa Gene During Gametogenesis of Goldfish (Carassius auratus), Zoological Research.
    [16] CAO Yun-chang, WEN Hong-bo, LI Wen-sheng, LIN Hao-ran.  The Profile of Growth Hormone Gene Expression in Extrapituitary Tissues of Lepomis cyanellus, Zoological Research.
    [17] ZHANG Yuan-qiang, WU Sheng-xi, XU Ruo-jun, ZHANG Shu-hua.  Studies on Immunohistochemistry and In situ Hybridization of Calcitonin Gene-Related Peptide and Its mRNA In Lungs of Macaca mulatta, Zoological Research.
    [18] WANG Jin-xing, ZHAO Xiao-fan, GONG Bo.  Studies on The Expression of Isozyme Genes in Pupae and Embryogenesis of Antheraea pernyi, Zoological Research.
    [19] WANG Ming-zhong, PENG Xian-pu, WU Lei, CHENG Yi-fong.  A Study on The Phenotype Characteristics and Mechanism of Formation of W[aR84h] 89b10 Eye-Variegation Strain of Drosophila melanogaster, Zoological Research.
    [20] Ji weizhi, Zou rujin, Yanye, Yang keqing, Wu guangyin, Wang bolin, Kong lin.  Study on secretion of sex steroids of Rhesus monkey (Macaca mulatta) in menstrual cycles, Zoological Research.
  • ZR-2020-044 Supplementary Materials and Methods.doc
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  2170
  • HTML全文浏览量:  502
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-29
  • 录用日期:  2020-05-07
  • 网络出版日期:  2020-06-01
  • 刊出日期:  2020-07-18

目录

    /

    返回文章
    返回