留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Pei Zhang, Jie-Si Chen, Qi-Ye Li, Long-Xiang Sheng, Yi-Xing Gao, Bing-Zheng Lu, Wen-Bo Zhu, Xiao-Yu Zhan, Yuan Li, Zhi-Bing Yuan, Gang Xu, Bi-Tao Qiu, Min Yan, Chun-Xue Guo, You-Qiong Wang, Yi-Jun Huang, Jing-Xia Zhang, Fu-Yu Liu, Zhong-Wei Tang, Sui-Zhen Lin, David N. Cooper, Huan-Ming Yang, Jian Wang, Yu-Qi Gao, Wei Yin, Guo-Jie Zhang, Guang-Mei Yan. Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys. Zoological Research, 2020, 41(1): 3-19. doi: 10.24272/j.issn.2095-8137.2020.012
Citation: Pei Zhang, Jie-Si Chen, Qi-Ye Li, Long-Xiang Sheng, Yi-Xing Gao, Bing-Zheng Lu, Wen-Bo Zhu, Xiao-Yu Zhan, Yuan Li, Zhi-Bing Yuan, Gang Xu, Bi-Tao Qiu, Min Yan, Chun-Xue Guo, You-Qiong Wang, Yi-Jun Huang, Jing-Xia Zhang, Fu-Yu Liu, Zhong-Wei Tang, Sui-Zhen Lin, David N. Cooper, Huan-Ming Yang, Jian Wang, Yu-Qi Gao, Wei Yin, Guo-Jie Zhang, Guang-Mei Yan. Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys. Zoological Research, 2020, 41(1): 3-19. doi: 10.24272/j.issn.2095-8137.2020.012

神经保护甾体减轻急性低压缺氧引起的食蟹猴脑损伤

doi: 10.24272/j.issn.2095-8137.2020.012

Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys

Funds: This study was supported by the National Natural Science Foundation of China (81773711) to W. Y., Strategic Priority Research Program of the Chinese Academy of Sciences (XDB13000000), Lundbeck Foundation Grant (R190-2014-2827), and Carlsberg Foundation Grant (CF16-0663) to G. J. Z., Science and Technology Program of Guangzhou, China (201704020103) to W. Y., Introduction of Innovative R&D Team Program of Guangdong Province (2013Y104), Leading Talent Project in Science and Technology of Guangzhou Development District (2019-L002), and National Major Scientific and Technological Special Project for“Significant New Drugs Development” (2016ZX09101026) to S.Z.L., and Key Projects of the Military Science and Technology PLA (AWS14C007 and AWS16J023) to Y.Q.G
More Information
  • 摘要:

    高原是地球上最恶劣的环境之一,最主要的特点是低气压所导致的缺氧。暴露在低压缺氧环境下,未习服人群会出现脑损伤,在严重情况下甚至会发展成为致命性的高原脑水肿。长期以来,人们应用一些遗传背景和人类差异较大的动物研究高原相关疾病,这可能延缓了防治这些疾病的研发进展。在这项研究中,我们应用非人灵长类动物食蟹猴为研究对象,通过对白细胞和大脑皮层进行转录组测序的方法来探索低压缺氧引起脑损伤的机制,并评价两种具有神经保护功能的甾体——孕酮和5α-androst-3β,5,6β-triol (TRIOL)在这个模型上的药效与可能分子机制。暴露在急性低压缺氧环境下,食蟹猴出现了与人类高原脑水肿相似的症状,包括行为失调、脑含水量升高、神经元受损以及血管源性脑水肿等。白细胞转录组数据分析揭示了经典的缺氧反应通路HIF-1信号,以及一些新发现的关键性通路如维生素D受体信号,这些通路可能共同调控了低压缺氧所导致的炎症反应。急性低压缺氧也改变了大脑的转录调控模式,激活了血管发生的调控通路,并抑制了有氧呼吸和蛋白折叠相关的通路,而这些通路很有可能与脑损伤的病理机制相关。整体上两种甾体的药效相似,都可以显著有效减轻急性低压缺氧所造成的脑损伤和大脑转录谱的改变,但功能分析显示两种药物却作用在不同的通路上,孕酮可以有效的提高红细胞生成,而TRIOL可以减轻谷氨酸兴奋性毒性。总之,本研究加深了我们对急性低压缺氧诱发脑损伤病理机制的理解,并为缺氧性脑损伤的药物研发提供了潜在的候选化合物。

    #Authors contributed equally to this work
  • Figure  1.  Acute HH-induced behavioral and cerebral impairments were attenuated by PROG and TRIOL treatments

    A: Experimental procedure for HH treatment of cynomolgus monkeys (HH group, n=6). Vertical bars along y-axis indicate medical definitions of high, very high, and extreme altitudes. Horizontal bars represent duration spent at each altitude. Blood drop and brain icons indicate altitudes and time points at which blood and brain samples, respectively, were collected for RNA-seq analyses. B: Experimental procedure for drug treatment (HH+ PROG and HH+TRIOL groups, each n=6). Needle tubes indicate altitudes and time points at which drugs were injected; blood drop and brain icons indicate altitudes and time points at which blood and brain samples were collected, respectively. Drugs were injected after blood collection at each stage. Samples from stages highlighted in red were selected for RNA-seq analyses. C: Chemical structures of two neuroprotectants (PROG and TRIOL) used in this study. D: Mean skeletal muscle coordination scores for each experimental group, with higher scores representing a lower degree of coordination, assessed after 2 h at 7 500 m. Each group was compared with HH group (*: Kruskal-Wallis test P<0.05). Data are presented with error bars indicating means±SD, n=6 per group. E: Mean brain water content for each experimental group, measured as 1–dry/wet weight of left hemisphere. Each group was compared with HH group (*: one-way ANOVA P<0.05; **: P<0.01, HH n=5, each other group n=6). Error bars represent SD. F: Representative images showing ultrastructure of capillaries in frontal cortex of each experimental group, taken after 48 h at 7 500 m. Blood-brain barrier (BBB) disruption and vasogenic edema evident in HH group but not in other groups, as characterized by severely shrunken capillaries with fluid penetrating into pericapillary space. Red arrowheads indicate capillary boundary. Scale bar: 2 μm. G: Representative images showing Nissl staining of frontal cortex tissues of each experimental group. Neuronal injuries evident in HH group and markedly attenuated in drug-treated groups. Black squares in first row denote areas magnified in second row. Red arrowheads indicate injured cells with dark staining, condensed nuclei, shrunken cell bodies, or weak staining with irregular shapes. Red scale bar: 75 μm, black scale bar: 20 μm. H: Percentage of injured neurons in frontal cortex of each experimental group based on Nissl staining shown in panel G. Each group was compared with HH group (**: one-way ANOVA P≤0.01; ***: P≤0.001, NN n=5, all other groups n=4). Error bars represent SD.

    Figure  2.  Transcriptomic dynamics of WBCs in response to acute HH.

    A: Principal component analysis (PCA) using genes robustly expressed in at least one of six HH stages (A–F). Colors denote stages of HH at which WBC samples were collected, as described in Figure 1A. B: Numbers of differentially expressed genes (DEGs) between stage A and each of the other five stages. C: Expression patterns of DEGs in three HH-responding modules, shown as log2-transformed reads per kilobase of transcript per million mapped reads (RPKM) fold changes of DEGs in each stage compared to stage A. Red and light blue lines indicate expression patterns of individual DEGs up- and down-regulated by HH, respectively. Bold lines show mean expression levels of all up- or down-regulated DEGs, with error bars indicating SD. UP and DOWN indicate exact number of up- or down-regulated DEGs by HH in each module. D: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in three HH-responding modules. Only significantly enriched pathways with a false discovery rate (FDR)-adjusted P-value of <0.05 were plotted. Dot color denotes P-value after FDR correction, and dot size denotes ratio of DEGs versus all expressed genes in each pathway. Different background colors denote classification of pathways. E: Interaction of pathways and symptoms according to reported articles. Blue color denotes pathways of impulse module; red color denotes pathways of late-responding module. Solid arrow line denotes reported direct interaction; dashed arrow line denotes reported associated relationship. F: Local co-expression network revealing genes in vitamin D receptor (VDR) complex as hub genes. Dark blue circles denote DEGs in impulse module; red circles denote genes in VDR complex and HIF1A as hub genes.

    Figure  3.  Regulation of WBC transcriptomic dynamics by PROG and TRIOL

    A: Principal component analysis (PCA) using genes robustly expressed in at least one of nine sample groups (i.e., no-drug treated group, PROG-treated group, and TRIOL-treated group in stages A, D, and F, respectively). Colors denote HH stages at which WBC samples were collected during HH+drug experiments, as described in Figure 1B, whereas shapes denote treatments. B: Number of differentially expressed genes (DEGs) between drug-treated and untreated groups in each HH stage studied. Stage A samples from both PROG and TRIOL groups were collected prior to drug injection; thus, DEGs of A/PROG*-A and A/TRIOL*-A reflect random variations between two groups of experimental monkeys rather than drug-specific effects. C: Erythrocyte-associated DEGs up-regulated by PROG. Red color and arrows denote genes up-regulated by PROG. D: Expression patterns and functions of TRIOL-induced DEGs in three HH-responding modules, shown as log2-transformed reads per kilobase of transcript per million mapped reads (RPKM) fold changes of DEGs in each sample group compared to stage A samples without TRIOL treatment. Light red and blue lines indicate expression patterns of individual DEGs in TRIOL-treated and untreated groups, respectively. Bold lines show mean expression levels of all TRIOL up- or down-regulated DEGs in each group, with error bars representing SD. UP and DOWN indicate exact number of up- or down-regulated DEGs by TRIOL in each module. Text below each module outlines functions associated with TRIOL-induced DEGs, with up and down arrows denoting gene-associated functions up- or down-regulated by TRIOL, respectively.

    Figure  4.  Transcriptomic changes in frontal cortex in response to acute HH, PROG, and TRIOL

    A: Principal component analysis (PCA) using genes robustly expressed in at least one of four sample groups (normobaric normoxia [NN], HH, HH+ PROG, and HH+TRIOL). Colors denote sample group. B: Expression changes of HH-induced differentially expressed genes (DEGs) after PROG or TRIOL treatment, shown as log2-transformed reads per kilobase of transcript per million mapped reads (RPKM) fold changes of DEGs in each sample group compared to NN group. HH-induced DEGs are categorized into strongly responsive genes (SRGs), weakly responsive genes (WRGs), and non-responsive genes (NRGs) according to their degree of expression level recovery after drug treatment. Red and light blue lines denote expression patterns of individual DEGs up- and down-regulated by HH, respectively. Bold lines show mean expression levels of all HH up- or down-regulated DEGs in each group, with error bars representing SD. Percentages of SRGs and WRGs versus all HH-induced DEGs are presented above each plot. C: Expression changes of drug DEGs after PROG or TRIOL treatment, shown as log2-transformed RPKM fold changes of DEGs in each sample group compared to NN group. Red and light blue lines denote expression patterns of individual DEGs up- or down-regulated by drugs, respectively. Bold lines show mean expression levels of all DEGs up- or down-regulated by drugs in each group, with error bars representing SD. D: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in HH-induced or drug-recovered DEGs. Only significantly enriched pathways with a false discovery rate (FDR)-adjusted P-value of <0.05 are plotted. In HH DEGs, SRGs, WRGs, and NRGs, red and blue dots denote pathways enriched in DEGs up- and down-regulated by HH, respectively. In drug DEGs (PROG DEGs and TRIOL DEGs), red and blue dots denote pathways enriched in DEGs up- and down-regulated by drugs, respectively. Color intensity of dot indicates level of significance, and size of dot denotes ratio of DEGs versus all expressed genes in each pathway. E: Postulated regulation of excitatory glutamate signaling by TRIOL. Rectangles represent proteins of TRIOL DEGs involved in glutamate signaling pathway. Blue colors denote down-regulation by HH. Gene symbols of DEGs associated with each protein in the pathway are listed below. F: Time-course showing intraneuronal calcium [Ca2+]i in primary cultured rat cortical neurons stimulated by glutamate with different doses of TRIOL. Glutamate stimulation was added at the fiftieth second in the experiment.

  • [1] Adams JS, Hewison M. 2008. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nature Clinical Practice Endocrinology and Metabolism, 4(2): 80−90. doi:  10.1038/ncpendmet0716
    [2] Ahmad Y, Sharma NK, Garg I, Ahmad MF, Sharma M, Bhargava K. 2013. An insight into the changes in human plasma proteome on adaptation to hypobaric hypoxia. PLoS One, 8(7): e67548. doi:  10.1371/journal.pone.0067548
    [3] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1): 25−29. doi:  10.1038/75556
    [4] Bärtsch P, Swenson ER. 2013. Acute high-altitude illnesses. The New England Journal of Medicine, 368(24): 2294−2302. doi:  10.1056/NEJMcp1214870
    [5] Basnyat B, Murdoch DR. 2003. High-altitude illness. The Lancet, 361(9373): 1967−1974. doi:  10.1016/S0140-6736(03)13591-X
    [6] Basu M, Pal K, Prasad R, Malhotra AS, Rao KS, Sawhney RC. 1997. Pituitary, gonadal and adrenal hormones after prolonged residence at extreme altitude in man. International Journal of Andrology, 20(3): 153−158. doi:  10.1046/j.1365-2605.1997.00046.x
    [7] Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1): 289−300. doi:  10.1111/j.2517-6161.1995.tb02031.x
    [8] Berglund B. 1992. High-altitude training. Sports Medicine, 14(5): 289−303. doi:  10.2165/00007256-199214050-00002
    [9] Bergmeier W, Piffath CL, Goerge T, Cifuni SM, Ruggeri ZM, Ware J, Wagner DD. 2006. The role of platelet adhesion receptor GPIbα far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proceedings of the National Academy of Sciences of the United States of America, 103(45): 16900−16905. doi:  10.1073/pnas.0608207103
    [10] Chen J, Leng T, Chen W, Yan M, Yin W, Huang Y, Lin S, Duan D, Lin J, Wu G, Zhang J, Yan G. 2013a. A Synthetic steroid 5α -androst-3β, 5, 6β -triol blocks hypoxia/reoxygenation-induced neuronal injuries via protection of mitochondrial function. Steroids, 78(10): 996−1002. doi:  10.1016/j.steroids.2013.06.004
    [11] Chen L, Qiu J-H, Zhang L-L, Luo XD. 2012. Adrenomedullin promotes human endothelial cell proliferation via HIF-1α. Molecular and Cellular Biochemistry, 365(1–2): 263−273.
    [12] Chen Y, Zhang J, Ge X, Du J, Deb DK, Li YC. 2013b. Vitamin D receptor inhibits nuclear factor κB activation by interacting with IκB kinase β protein. The Journal of Biological Chemistry, 288(27): 19450−19458. doi:  10.1074/jbc.M113.467670
    [13] Chung I, Han G, Seshadri M, Gillard BM, Yu WD, Foster BA, Trump DL, Johnson CS. 2009. Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo. Cancer Research, 69(3): 967−975. doi:  10.1158/0008-5472.CAN-08-2307
    [14] Dunlop EA, Tee AR. 2014. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Seminars in Cell & Developmental Biology, 36(5): 121−129.
    [15] Eyries M, Siegfried G, Ciumas M, Montagne K, Agrapart M, Lebrin F, Soubrier F. 2008. Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circulation Research, 103(4): 432−440. doi:  10.1161/CIRCRESAHA.108.179333
    [16] Gemmati D, Vigliano M, Burini F, Mari R, El Mohsein HH, Parmeggiani F, Serino ML. 2016. Coagulation factor XIIIA (F13A1): novel perspectives in treatment and pharmacogenetics. Current Pharmaceutical Design, 22(11): 1449−1459. doi:  10.2174/1381612822666151210122954
    [17] Giffard RG, Xu L, Zhao H, Carrico W, Ouyang Y, Qiao Y, Sapolsky R, Steinberg G, Hu B, Yenari MA. 2004. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. Journal of Experimental Biology, 207(18): 3213−3220. doi:  10.1242/jeb.01034
    [18] Guo P, Luo H, Fan Y, Luo Y, Zhou Q. 2013. Establishment and evaluation of an experimental animal model of high altitude cerebral edema. Neuroscience Letters, 547: 82−86. doi:  10.1016/j.neulet.2013.05.008
    [19] Hackett PH, Roach RC. 2004. High altitude cerebral edema. High Altitude Medicine & Biology, 5(2): 136−146.
    [20] Han S, Xu W, Wang Z, Qi X, Wang Y, Ni Y, Shen H, Hu Q, Han W. 2016. Crosstalk between the HIF-1 and Toll-like receptor/nuclear factor- κB pathways in the oral squamous cell carcinoma microenvironment. Oncotarget, 7(25): 37773−37789.
    [21] Hasegawa T, Yoshida S, Sugeno N, Kobayashi J, Aoki M. 2018. DnaJ/Hsp40 family and Parkinson’ s disease. Frontiers in Neuroscience, 11: 743. doi:  10.3389/fnins.2017.00743
    [22] Hatfield KJ, Bedringsaas SL, Ryningen A, Gjertsen BT, Bruserud O. 2010. Hypoxia increases HIF-1α expression and constitutive cytokine release by primary human acute myeloid leukaemia cells. European Cytokine Network, 21(3): 154−164.
    [23] Hu H, Zhou Y, Leng T, Liu A, Wang Y, You X, Chen J, Tang L, Chen W, Qiu P, Yin W, Huang Y, Zhang J, Wang L, Sang H, Yan G. 2014. The major cholesterol metabolite cholestane-3β, 5α, 6β -triol functions as an endogenous neuroprotectant. Journal of Neuroscience, 34(34): 11426−11438. doi:  10.1523/JNEUROSCI.0344-14.2014
    [24] Huang X, Zhou Y, Zhao T, Han X, Qiao M, Ding X, Li D, Wu L, Wu K, Zhu LL, Fan M. 2015. A method for establishing the high-altitude cerebral edema (HACE) model by acute hypobaric hypoxia in adult mice. Journal of Neuroscience Methods, 245: 178−181. doi:  10.1016/j.jneumeth.2015.02.004
    [25] Ikegame Y, Yamashita K, Hayashi S, Yoshimura S, Nakashima S, Iwama T. 2010. Neutrophil elastase inhibitor prevents ischemic brain damage via reduction of vasogenic edema. Hypertension Research, 33(7): 703−707. doi:  10.1038/hr.2010.58
    [26] Imray C, Wright A, Subudhi A, Roach R. 2010. Acute mountain sickness: pathophysiology, prevention, and treatment. Progress in Cardiovascular Diseases, 52(6): 467−484. doi:  10.1016/j.pcad.2010.02.003
    [27] Jain K, Suryakumar G, Ganju L, Singh SB. 2014. Differential hypoxic tolerance is mediated by activation of heat shock response and nitric oxide pathway. Cell Stress Chaperones, 19(6): 801−812. doi:  10.1007/s12192-014-0504-9
    [28] Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L. 2003. IL-1β mediated up-regulation of HIF-1α via an NFkB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. The FASEB Journal, 17(14): 2115−2117. doi:  10.1096/fj.03-0329fje
    [29] Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1): 27−30. doi:  10.1093/nar/28.1.27
    [30] Kato S. 2000. The function of vitamin D receptor in vitamin D action. The Journal Biochemistry, 127(5): 717−722. doi:  10.1093/oxfordjournals.jbchem.a022662
    [31] Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. 2010. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biology, 8(6): e1000412. doi:  10.1371/journal.pbio.1000412
    [32] Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4): 357−360. doi:  10.1038/nmeth.3317
    [33] Kimmel HL, Thim L, Kuhar MJ. 2002. Activity of various CART peptides in changing locomotor activity in the rat. Neuropeptides, 36(1): 9−12. doi:  10.1054/npep.2002.0884
    [34] Kito G, Nishimura A, Susumu T, Nagata R, Kuge Y, Yokota C, Minematsu K. 2001. Experimental thromboembolic stroke in cynomolgus monkey. Journal Neuroscience Methods, 105(1): 45−53. doi:  10.1016/S0165-0270(00)00351-4
    [35] Lambert PD, Couceyro PR, Mcgirr KM, Dall Vechia SE, Smith Y, Kuhar MJ. 1998. CART peptides in the central control of feeding and interactions with neuropeptide Y. Synapse, 29(4): 293−298. doi:  10.1002/(SICI)1098-2396(199808)29:4<293::AID-SYN1>3.0.CO;2-0
    [36] Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9(1): 559. doi:  10.1186/1471-2105-9-559
    [37] Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA. 2010. Tackling the widespread and critical impact of batch effects in high-throughput data. Nature Reviews Genetics, 11(10): 733−739. doi:  10.1038/nrg2825
    [38] Lissa V-A, Bruno M, Suzana H-H. 2013. Different scaling of white matter volume, cortical connectivity, and gyrification across rodent and primate brains. Frontiers in Neuroanatomy, 7(3).
    [39] Liu YW, Li S, Dai SS. 2018. Neutrophils in traumatic brain injury (TBI): friend or foe?. Journal of Neuroinflammation, 15(1): 146. doi:  10.1186/s12974-018-1173-x
    [40] Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12): 550. doi:  10.1186/s13059-014-0550-8
    [41] Martin D, Windsor J. 2008. From mountain to bedside: understanding the clinical relevance of human acclimatisation to high-altitude hypoxia. Postgraduate Medical Journal, 84(998): 622−627. doi:  10.1136/pgmj.2008.068296
    [42] Minta A, Kao JP, Tsien RY. 1989. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. The Journal of Biological Chemistry, 264(14): 8171−8178.
    [43] Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 35(suppl_2): W182−W185.
    [44] Nei M, Xu P, Glazko G. 2001. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proceedings of the National Academy of Sciences of the United States of America, 98(5): 2497−2502. doi:  10.1073/pnas.051611498
    [45] Palazon A, Goldrath AW, Nizet V, Johnson RS. 2014. HIF transcription factors, inflammation, and immunity. Immunity, 41(4): 518−528. doi:  10.1016/j.immuni.2014.09.008
    [46] Qiu XB, Shao YM, Miao S, Wang L. 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cellular and Molecular Life Sciences, 63(22): 2560−2570. doi:  10.1007/s00018-006-6192-6
    [47] Rabinstein AA. 2006. Treatment of cerebral edema. The Neurologist, 12(2): 59−73. doi:  10.1097/01.nrl.0000186810.62736.f0
    [48] Ramakrishnan S, Anand V, Roy S. 2014. Vascular endothelial growth factor signaling in hypoxia and inflammation. Journal of Neuroimmune Pharmacology, 9(2): 142−160. doi:  10.1007/s11481-014-9531-7
    [49] Ravenna L, Salvatori L, Russo MA. 2015. HIF3a: the little we know. The FEBS Journal, 283(6): 993−1003.
    [50] Robinson MD, Mccarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139−140. doi:  10.1093/bioinformatics/btp616
    [51] Rogge G, Jones D, Hubert GW, Lin Y, Kuhar MJ. 2008. CART peptides: regulators of body weight, reward and other functions. Nature Reviews Neuroscience, 9(10): 747−758. doi:  10.1038/nrn2493
    [52] Saha D, Patgaonkar M, Shroff A, Ayyar K, Bashir T, Reddy KVR. 2014. Hemoglobin expression in nonerythroid cells: novel or ubiquitous?. International Journal of Inflammation, 2014.
    [53] Scannevin RH, Huganir RL. 2000. Postsynaptic organisation and regulation of excitatory synapses. Nature Reviews Neuroscience, 1(2): 133−141. doi:  10.1038/35039075
    [54] Schoch HJ, Fischer S, Marti HH. 2002. Hypoxia - induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain, 125(11): 2549−2557. doi:  10.1093/brain/awf257
    [55] Semenza GL. 2009. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology, 24(2): 97−106. doi:  10.1152/physiol.00045.2008
    [56] Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB. 2010. Genetic evidence for high-altitude adaptation in Tibet. Science, 329(5987): 72−75. doi:  10.1126/science.1189406
    [57] Singh M, Su C. 2013. Progesterone and neuroprotection. Hormones and Behavior, 63(2): 284−290. doi:  10.1016/j.yhbeh.2012.06.003
    [58] Soto C, Estrada LD. 2008. Protein misfolding and neurodegeneration. Archives of Neurology & Psychiatry, 65(2): 184−189.
    [59] Sparkenbaugh E, Pawlinski R. 2013. Interplay between coagulation and vascular inflammation in sickle cell disease. British Journal of Haematology, 162(1): 3−14. doi:  10.1111/bjh.12336
    [60] Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV. 2006. Inflammation and brain edema: new insights into the role of chemokines and their receptors. Acta Neurochirurgical Supplementum, 96: 444.
    [61] Stein DG. 2008. Progesterone exerts neuroprotective effects after brain injury. Brain Research Reviews, 57(2): 386−397. doi:  10.1016/j.brainresrev.2007.06.012
    [62] Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. 2013. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology, 31(1): 46−53. doi:  10.1038/nbt.2450
    [63] Ward Jr JH. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301): 236−244. doi:  10.1080/01621459.1963.10500845
    [64] Wilson MH, Newman S, Imray CH. 2009. The cerebral effects of ascent to high altitudes. The Lancet Neurology, 8(2): 175−191. doi:  10.1016/S1474-4422(09)70014-6
    [65] Won S, Sayeed I, Peterson BL, Wali B, Kahn JS, Stein DG. 2015. Vitamin D prevents hypoxia/reoxygenation-induced blood-brain barrier disruption via Vitamin D receptor-mediated NF-kB signaling pathways. PLoS One, 10(3): e0122821. doi:  10.1371/journal.pone.0122821
    [66] Wright AD, Beazley MF, Bradwell AR, Chesner IM, Clayton RN, Forster PJ, Hillenbrand P, Imray CH, Society BMRE. 2004. Medroxyprogesterone at high altitude. The effects on blood gases, cerebral regional oxygenation, and acute mountain sickness. Wilderness & Environmental Medicine, 15(1): 25−31.
    [67] Wroge CM, Hogins J, Eisenman L, Mennerick S. 2012. Synaptic NMDA receptors mediate hypoxic excitotoxic death. Journal of Neuroscience, 32(19): 6732−6742. doi:  10.1523/JNEUROSCI.6371-11.2012
    [68] Yan G, Zhang G, Fang X, Zhang Y, Li C, Ling F, Cooper DN, Li Q, Li Y, Van Gool AJ, Du H, Chen J, Zhang P, Huang Z, Thompson JR, Meng Y, Bai Y, Wang J, Zhuo M, Wang T, Huang Y, Wei L, Li J, Wang Z, Hu H, Yang P, Le L, Stenson PD, Li B, Liu X, Ball EV, An N, Huang Q, Zhang Y, Fan W, Zhang X, Li Y, Wang W, Katze MG, Su B, Nielsen R, Yang H, Wang J, Wang X, Wang J. 2011. Genome sequencing and comparison of two non-human primate animal models, the cynomolgus and Chinese rhesus macaques. Nature Biotechnology, 29(11): 1019−1023. doi:  10.1038/nbt.1992
    [69] Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, As an, Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, Zhou G, Tang M, Qin J, Wang T, Feng S, Li G, Huasang, Luosang J, Wang W, Chen F, Wang Y, Zheng X, Li Z, Bianba Z, Yang G, Wang X, Tang S, Gao G, Chen Y, Luo Z, Gusang L, Cao Z, Zhang Q, Ouyang W, Ren X, Liang H, Zheng H, Huang Y, Li J, Bolund L, Kristiansen K, Li Y, Zhang Y, Zhang X, Li R, Li S, Yang H, Nielsen R, Wang J, Wang J. 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 329(5987): 75−78. doi:  10.1126/science.1190371
  • [1] Xiao-Hui Li, Juan Zhang, Ding-Feng Li, Wei Wu, Zhong-Wen Xie, Qiang Liu.  Physiological and pathological insights into exosomes in the brain, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.043
    [2] Hong-Fa Yan, Qing-Zhang Tuo, Qiao-Zhi Yin, Peng Lei.  The pathological role of ferroptosis in ischemia/reperfusion-related injury, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.042
    [3] Bo Zhang, Zhi-Gang Zhou, Yin Zhou, Yong-Chang Chen.  Increased attention to snake images in cynomolgus monkeys: an eye-tracking study, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.005
    [4] Hao Dai, Qi-Qi Jin, Lin Li, Luo-Nan Chen.  Reconstructing gene regulatory networks in single-cell transcriptomic data analysis, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.215
    [5] Lei Shi, Bing Su.  A transgenic monkey model for the study of human brain evolution, Zoological Research. doi: 10.24272/j.issn.2095-8137.2019.031
    [6] Wei Li, Ling-Yun Luo, Xun Yang, Yong He, Bin Lian, Chao-Hua Qu, Qing-Yuan Wu, Jian-Guo Zhang, Peng Xie.  Depressed female cynomolgus monkeys (Macaca fascicularis) display a higher second-to-fourth (2D:4D) digit ratio, Zoological Research. doi: 10.24272/j.issn.2095-8137.2019.022
    [7] Ding CUI, Yuan ZHOU.  Stress-relevant social behaviors of middle-class male cynomolgus monkeys (Macaca fascicularis), Zoological Research. doi: 10.13918/j.issn.2095-8137.2015.6.337
    [8] Xun-Xun CHU, Joshua Dominic Rizak, Shang-Chuan YANG, Jian-Hong WANG, Yuan-Ye MA, Xin-Tian HU.  A natural model of behavioral depression in postpartum adult female cynomolgus monkeys (Macaca fascicularis), Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.3.174
    [9] Shuai TIAN, Yu-Huan MENG, Ming-Yu LIU, Fei SUN, Jun-Hui CHEN, Hong-Li DU, Xiao-Ning WANG.  TRIMCyp frequency of the cynomolgus macaque (Macaca fascicularis) in captivity in China, Zoological Research. doi: 10.3724/SP.J.1141.2013.02097
    [10] JI Fang, JIN Li-Sha, ZENG Xiao-Ming, ZHANG Xiu-Juan, ZHANG Yan-Chun, SUN Yun-Xiao, GAO Li-Hua, HE Hong, RAO Jun-Hua, LIU Xiao-Ming, PENG Bai-Lu.  Comparison of gene expression between naturally occurring and diet-induced T2DM in cynomolgus monkeys, Zoological Research. doi: 10.3724/SP.J.1141.2012.01079
    [11] ZHANG Li-Hua, LI Ming, SHI Xiao-Dong, REN Hui, SU Bing, XU Zhong.  Association of the schizophrenia susceptible gene DKK4 with brain volume in Chinese populations, Zoological Research. doi: 10.3724/SP.J.1141.2011.01062
    [12] XIA Ji-Liang, HAO Xiang-Fen, ZENG Xiao-Ming, JIN Li-Sha, ZHOU Tong, LI Xue-Jia.  Correlation between cardiovascular risk factors and the expression of cardiovascular disease related genes in cynomolgus monkeys, Zoological Research. doi: 10.3724/SP.J.1141.2011.03293
    [13] ZHANG Chi, WANG Xiao-Xiao, WANG Lu, XIANG Ying, WEI Qing, WANG Wan-Yu, XIONG Yu-Lian.  Application of flow cytometry to detect ABO blood group antibody levels in rhesus monkeys and cynomolgus monkeys, Zoological Research. doi: 10.3724/SP.J.1141.2011.01056
    [14] ZHANG Xiu-Juan, LI Xue-Jia, XIA Ji-Liang, YAN Sun-Xing, JI Fang, ZHANG Yan-Chun.  Expression status of diabetes-associated genes in middle and aged cynomolgus monkeys, Zoological Research. doi: 10.3724/SP.J.1141.2011.03300
    [15] YANG Shang-Chuan, DONG Jin-Run, QU Jia-Gui, HU Xin-Tian, WANG Zheng-Bo.  A traumatic brain injury model for distinguishing between transplanted neural cells and host cells in vivo, Zoological Research. doi: 10.3724/SP.J.1141.2011.04421
    [16] SHI Xiao-dong, WANG Jin-kai, LI Yi, LUO Xiong-jian, ZHANG Wei, SU Bing.  Association Study of a Schizophrenia Susceptible Gene GULP1 with Brain Volume in Chinese Populations, Zoological Research. doi: 10.3724/SP.J.1141.2009.04377
    [17] CHEN Zhong, LI Shu-zheng, ZHU Jian-qin.  Inhibitory Effect of Acute Heat Stress on High Affinitive Gaba Uptake in The Brain of Mice, Zoological Research.
    [18] ZOU En-min, DU Nan-shan, LAI WEI.  The Effects of Acute Progressive Hypoxia on The Respiration Rate of The Chinese Crab Eriocheir sinensis, Zoological Research.
    [19] FAN Ji-rui, MIAO Ying-da, MA Yuan-ye, CAI Jing-xia, XU Lin, XIAO Kun-yuan.  The Computer System Used in Primate Brain Research, Zoological Research.
    [20] LIU Da-kun et al..  Preliminary Observation of Mitosis in the Cerebellar Cortex Nerve Cell of Rabbit Under Experimental Injury, Zoological Research.
  • ZoolRes-41-1-3-Supplementary material.zip
  • 加载中
图(4)
计量
  • 文章访问数:  6273
  • HTML全文浏览量:  289
  • PDF下载量:  535
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-02
  • 录用日期:  2019-12-11
  • 网络出版日期:  2019-12-13
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回