留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Models and detection of spontaneous recurrent seizures in laboratory rodents

Bin Gu Katherine A. Dalton

Bin Gu, Katherine A. Dalton. Models and detection of spontaneous recurrent seizures in laboratory rodents. Zoological Research, 2017, 38(4): 171-179. doi: 10.24272/j.issn.2095-8137.2017.042
Citation: Bin Gu, Katherine A. Dalton. Models and detection of spontaneous recurrent seizures in laboratory rodents. Zoological Research, 2017, 38(4): 171-179. doi: 10.24272/j.issn.2095-8137.2017.042

自发性癫痫在啮齿类实验动物中的模型和探测

doi: 10.24272/j.issn.2095-8137.2017.042
基金项目: This study was supported by the American Epilepsy Society Fellowship (2016)
详细信息
    通讯作者:

    Bin Gu, bin_gu@med.unc.edu

  • 中图分类号:  

Models and detection of spontaneous recurrent seizures in laboratory rodents

Funds: This study was supported by the American Epilepsy Society Fellowship (2016)
More Information
    Corresponding author: Bin Gu, bin_gu@med.unc.edu
  • 摘要: 以自发性癫痫为特征的癫痫症是一种常见的神经系统疾病。全世界大概有百分之一的人口患有该症。动物实验,特别是利用小型啮齿类实验动物,仍是研究癫痫症潜在机制,并进一步预防,诊断和治疗癫痫症的基础。虽然现在有很多癫痫症动物模型研究已经把注意力放到了癫痫的发病机理上,但是由于检测困难,关于自发性癫痫的探讨却很少。本篇综述总结了大小鼠遗传型和获得型自发性癫痫模型,并进一步探讨了自发性癫痫的记录和探测方法。
  • [1] Ben-Ari Y, Tremblay E, Ottersen OP. 1980. Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience, 5(3): 515-528.
    [2] Ben-Ari Y. 1985. Limbic seizure and brain damage produced by kainic acid:mechanisms and relevance to human temporal lobe epilepsy.Neuroscience, 14(2): 375-403.
    [3] Boillot M, Huneau C, Marsan E, Lehongre K, Navarro V, Ishida S, Dufresnois B, Ozkaynak E, Garrigue J, Miles R, Martin B, Leguern E, Anderson MP, Baulac S. 2014. Glutamatergic neuron-targeted loss of LGI1 epilepsy gene results in seizures. Brain, 137: 2984-2996.
    [4] Bolkvadze T, Pitkänen A. 2012. Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. Journal of Neurotrauma, 29(5): 789-812.
    [5] Brandt C, Glien M, Potschka H, Volk H, Löscher W. 2003. Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats.Epilepsy Research, 55(1-2): 83-103.
    [6] Brenner R, Chen QH, Vilaythong A, Toney GM, Noebels JL, Aldrich RW. 2005. BK channel β4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nature Neuroscience, 8(12): 1752-1759.
    [7] Brew HM, Gittelman JX, Silverstein RS, Hanks TD, Demas VP, Robinson LC, Robbins CA, McKee-Johnson J, Chiu SY, Messing A, Tempel BL. 2007.Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons. Journal of Neurophysiology, 98(3): 1501-1525.
    [8] Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, Sprengel R. 1995. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science, 270(5242): 1677-1680.
    [9] Burgess DL, Jones JM, Meisler MH, Noebels JL. 1997. Mutation of the Ca2+ channel β subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell, 88(3): 385-392.
    [10] Chabrol E, Navarro V, Provenzano G, Cohen I, Dinocourt C, RivaudPéchoux S, Fricker D, Baulac M, Miles R, LeGuern E, Baulac S. 2010.Electroclinical characterization of epileptic seizures in leucine-rich, gliomainactivated 1-deficient mice. Brain, 133(9): 2749-2762.
    [11] Chao HT, Chen HM, Samaco RC, Xue MS, Chahrour M, Yoo J, Neul JL, Gong S, Lu HC, Heintz N, Ekker M, Rubenstein JLR, Noebels JL, Rosenmund C, Zoghbi HY. 2010. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 468(7321):263-269.
    [12] Chen CL, Westenbroek RE, Xu XR, Edwards CA, Sorenson DR, Chen Y, McEwen DP, O'malley HA, Bharucha V, Meadows LS, Knudsen GA, Vilaythong A, Noebels JL, Saunders TL, Scheuer T, Shrager P, Catterall WA, Isom LL. 2004. Mice lacking sodium channel β1 subunits display defects in neuronal excitability, sodium channel , and nodal architecture. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 24(16): 4030-4042.
    [13] Chen CL, Dickendesher TL, Oyama F, Miyazaki H, Nukina N, Isom LL. 2007. Floxed allele for conditional inactivation of the voltage-gated sodium channel β1 subunit Scn1b. Genesis, 45(9): 547-553.
    [14] Chen YC, Parker WD, Wang KL. 2014. The role of T-type calcium channel genes in absence seizures. Frontiers in Neurology, 5: 45.
    [15] Cheong E, Shin HS. 2013. T-type Ca2+ channels in absence epilepsy.Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828(7): 1560-1571.
    [16] Cho CH. 2012. Molecular mechanism of circadian rhythmicity of seizures in temporal lobe epilepsy. Frontiers in Cellular Neuroscience, 6: 55.
    [17] Coenen AM, van Luijtelaar ELJM. 2003. Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behavior Genetics, 33(6): 635-655.
    [18] D'ambrosio R, Fairbanks JP, Fender JS, Born DE, Doyle DL, Miller JW. 2004. Post-traumatic epilepsy following fluid percussion injury in the rat.Brain, 127: 304-314.
    [19] D'Cruz JA, Wu C, Zahid T, El-Hayek Y, Zhang L, Eubanks JH. 2010.Alterations of cortical and hippocampal EEG activity in MeCP2-deficient mice. Neurobiology of Disease, 38(1): 8-16.
    [20] De Sarro G, Russo E, Citraro R, Meldrum BS. 2015. Genetically epilepsyprone rats (GEPRs) and DBA/2 mice: two animal models of audiogenic reflex epilepsy for the evaluation of new generation AEDs. Epilepsy & Behavior, 2015, doi:  10.1016/j.yebeh.2015.06.030.
    [21] Douglas CL, Vyazovskiy V, Southard T, Chiu SY, Messing A, Tononi G, Cirelli C. 2007. Sleep in Kcna2 knockout mice. BMC Biology, 5: 42.
    [22] Dubé C, Richichi C, Bender RA, Chung G, Litt B, Baram TZ. 2006.Temporal lobe epilepsy after experimental prolonged febrile seizures:prospective analysis. Brain, 129: 911-922.
    [23] Dutton SB, Makinson CD, Papale LA, Shankar A, Balakrishnan B, Nakazawa K, Escayg A. 2013. Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility. Neurobiology of Disease, 49: 211-220.
    [24] Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JD Jr, Hawkes R, Frankel WN, Copeland NG, Jenkins NA. 1996. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell, 87(4): 607-617.
    [25] Ganesh S, Delgado-Escueta AV, Sakamoto T, Avila MR, Machado-Salas J, Hoshii Y, Akagi T, Gomi H, Suzuki T, Amano K, Agarwala KL, Hasegawa Y, Bai DS, Ishihara T, Hashikawa T, Itohara S, Cornford EM, Niki H, Yamakawa K. 2002. Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Human Molecular Genetics, 11(11): 1251-1262.
    [26] Giorgi FS, Mauceli G, Blandini F, Ruggieri S, Paparelli A, Murri L, Fornai F. 2006. Locus coeruleus and neuronal plasticity in a model of focal limbic epilepsy. Epilepsia, 47 Suppl 5: 21-25.
    [27] Goldberg EM, Coulter DA. 2013. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nature Reviews Neuroscience, 14(5): 337-349.
    [28] Gorter JA, Van Vliet EA, Aronica E, Da Silva FHL. 2001. Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons. European Journal of Neuroscience, 13(4): 657-669.
    [29] Han K, Holder JL Jr, Schaaf CP, Lu H, Chen HM, Kang H, Tang JR, Wu ZY, Hao S, Cheung SW, Yu P, Sun H, Breman AM, Patel A, Lu HC, Zoghbi HY. 2013. SHANK3 over causes manic-like behaviour with unique pharmacogenetic properties. Nature, 503(7474): 72-77.
    [30] Harrington EP, Möddel G, Najm IM, Baraban SC. 2007. Altered glutamate receptor-transporter and spontaneous seizures in rats exposed to methylazoxymethanol in utero. Epilepsia, 48(1): 158-168.
    [31] Hawkins NA, Kearney JA. 2012. Confirmation of an epilepsy modifier locus on mouse chromosome 11 and candidate gene analysis by RNA-Seq.Genes, Brain and Behavavior, 11(4): 452-460.
    [32] Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R. 2007. How common are the "common" neurologic disorders? Neurology, 68(5): 326-337.
    [33] Hitt BD, Jaramillo TC, Chetkovich DM, Vassar R. 2010. BACE1-/- mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization. Molecular Neurodegener, 5: 31.
    [34] Hofstra WA, de Weerd AW. 2009. The circadian rhythm and its interaction with human epilepsy: a review of literature. Sleep Medicine Reviews, 13(6):413-420.
    [35] Hunt RF, Scheff SW, Smith BN. 2009. Posttraumatic
  • [1] Ling Xu, Dan-Dan Yu, Yu-Hua Ma, Yu-Lin Yao, Rong-Hua Luo, Xiao-Li Feng, Hou-Rong Cai, Jian-Bao Han, Xue-Hui Wang, Ming-Hua Li, Chang-Wen Ke, Yong-Tang Zheng, Yong-Gang Yao.  COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.053
    [2] Gary Wong, Xiang-Guo Qiu.  Type I interferon receptor knockout mice as models for infection of highly pathogenic viruses with outbreak potential, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.052
    [3] Wei-Na Guo, Bin Zhu, Ling Ai, Dong-Liang Yang, Bao-Ju Wang.   Animal models for the study of hepatitis B virus infection, Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.013
    [4] Gary Wong, Wen-Guang Cao, Shi-Hua He, Zi-Rui Zhang, Wen-Jun Zhu, Estella Moffat, Hideki Ebihara, Carissa Embury-Hyatt, Xiang-Guo Qiu.  Development and characterization of a guinea pig model for Marburg virus, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.054
    [5] Yong-Gang Yao.  Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.032
    [6] Ji Xiao, Rong Liu, Ce-Shi Chen.  Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.033
    [7] Ming GUO, Wen-Zhe HO.  Animal models to study Mycobacterium tuberculosis and HIV co-infection, Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.3.163
    [8] CAO Guang, LIU Feng-Liang, ZHANG Gao-Hong, ZHENG Yong-Tang.  The primate TRIMCyp fusion genes and mechanism of restricting retroviruses replication, Zoological Research. doi: 10.3724/SP.J.1141.2012.01099
    [9] WANG Wen-Guang, HUANG Xiao-Yan, XU Juan, SUN Xiao-Mei, DAI Jie-Jie, LI Qi-Han.  Experimental studies on infant Tupaia belangeri chineses with EV71 infection, Zoological Research. doi: 10.3724/SP.J.1141.2012.01007
    [10] GUO Li-Yun, WEI Jing-Kuan, YANG Shang-Chuan, WANG Zheng-Bo.  Glaucoma model for stem cell transplantation research in New Zealand white rabbits, Zoological Research. doi: 10.3724/SP.J.1141.2012.02225
    [11] ZHU Hui-Fang, ZHANG Yuan-Xu, ZHAO Xu-Dong.  Animal models of human glioma: the progress of application and investigation, Zoological Research. doi: 10.3724/SP.J.1141.2012.03337
    [12] LI Yuan, SU Jian-Jia, YANG Chun, CAO Ji, OU Chao, LIANG Liang, YANG Fang, WANG.  Progress on establishment of tree shrew(Tupaia) chronic infection with HBV in vivo, Zoological Research. doi: 10.3724/SP.J.1141.2011.01104
    [13] SHEN Pei-Qing, ZHENG Hong, LIU Ru-Wen, CHEN Li-Ling, LI Bo, HE Bao-Li, LI Jin-Tao, BE.  Progress and prospect in research on laboratory tree shrew in China, Zoological Research. doi: 10.3724/SP.J.1141.2011.01109
    [14] CAO Guang, NIE Wen-Hui, LIU Feng-Liang, KUANG Yi-Qun, WANG Jin-Huan, SU Wei-Ting, ZH Y.  Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis, Zoological Research. doi: 10.3724/SP.J.1141.2011.01040
    [15] LI Yao, DAI Jie-Jie, SUN Xiao-Mei, XIA Xue-Shan.  Progress in studies on HCV receptor of Tupaia as a potential hepatitis C animal model, Zoological Research. doi: 10.3724/SP.J.1141.2011.01097
    [16] ZHU Lin, ZHANG Gao-Hong, ZHENG Yong-Tang.  Application Studies of Animal Models in Evaluating Safety and Efficacy of HIV-1 Microbicides, Zoological Research. doi: 10.3724/SP.J.1141.2010.01066
    [17] HANG Gao-hong, LI Ming-hua, ZHENG Yong-tang.  Application of AIDS Macaque Animal Model in HIV Vaccine Research, Zoological Research.
    [18] ZHANG Gao-hong, CHEN Ya-li, TANG Hong, ZHENG Yong-tang.  Humanized SCID Mouse:A Small Animal Model for HIV Research, Zoological Research.
    [19] GUO Ren, CHEN Shu-fan, LUO Qi-sheng, WANG Qing-ling, YI Hong-kun, ZHAN Qiong-fen.  Transgenic Mice as A Model For Neurovirulence Test of Live Poliomyelitis Vaccines, Zoological Research.
    [20] HUANG Hai, BEN Kun-long, ZHENG Yong-tang.  Current Status in Research on Animal Models For human Aquired Immunodeficiency Syndrome, Zoological Research.
  • 加载中
计量
  • 文章访问数:  525
  • HTML全文浏览量:  68
  • PDF下载量:  574
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-05
  • 修回日期:  2017-06-20
  • 刊出日期:  2017-07-18

目录

    /

    返回文章
    返回