留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evolution and phylogenetic application of the MC1R gene in the Cobitoidea (Teleostei: Cypriniformes)

Qiong-Ying TANG Li-Xia SHI Fei LIU Dan YU Huan-Zhang LIU

Qiong-Ying TANG, Li-Xia SHI, Fei LIU, Dan YU, Huan-Zhang LIU. Evolution and phylogenetic application of the MC1R gene in the Cobitoidea (Teleostei: Cypriniformes). Zoological Research, 2016, 37(5): 281-289. doi: 10.13918/j.issn.2095-8137.2016.5.281
Citation: Qiong-Ying TANG, Li-Xia SHI, Fei LIU, Dan YU, Huan-Zhang LIU. Evolution and phylogenetic application of the MC1R gene in the Cobitoidea (Teleostei: Cypriniformes). Zoological Research, 2016, 37(5): 281-289. doi: 10.13918/j.issn.2095-8137.2016.5.281

鳅超科鱼类MC1R基因的进化及系统发育应用

doi: 10.13918/j.issn.2095-8137.2016.5.281
基金项目: This study was supported by the National Natural Science Foundation of China (NSFC31272306,31400359,31401968)
详细信息
    作者简介:

    唐琼英:Qiong-Ying TANG, Huan-Zhang LIU

    通讯作者:

    Qiong-Ying TANG, Huan-Zhang LIU

Evolution and phylogenetic application of the MC1R gene in the Cobitoidea (Teleostei: Cypriniformes)

More Information
    Corresponding author: Qiong-Ying TANG, Huan-Zhang LIU
  • 摘要: 狭义鳅超科鱼类(即鳅类)具有极为丰富的体色模式,但到目前为止,关于其体色模式的进化机制知之甚少。黑皮质素1型受体(MC1R)基因在黑色素的合成和动物体色模式的形成过程中起着重要作用。本研究对鳅类4个科的31个物种44个个体进行了MC1R基因部分片段的扩增和测序。系统发育分析获得的鳅类物种的拓扑结构与以前用多个核基因联合分析的结果一致,表明这4个科均为单系群,其姐妹群关系为:沙鳅科+(花鳅科+(爬鳅科+条鳅科))。基因进化分析表明,整体上鳅类的MC1R基因受纯化选择压力,基因不同位点具有不同的dN/dS值。分支模型分析表明,沙鳅科和花鳅科比背景分支具有更低的dN/dS值,表明MC1R基因在沙鳅科和花鳅科中的进化受到更强的纯化选择压力。爬鳅科和条鳅科比背景分支则有更高的dN/dS值,表明它们受到的进化压力更为松散,从而具有更快的进化速率。因此,我们推测,沙鳅科和花鳅科中相对稳定的体色模式可能与MC1R基因受到强烈的纯化选择压力有关,而爬鳅科和条鳅科中复杂多样的体色模式可能与松散的选择压力相关。由于MC1R基因易于扩增,且能很好地运用于系统发育构建,因此,该基因是一个研究鱼类系统发育关系的良好分子标记。
  • [1] Aljanabi SM, Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25(22): 4692-4693.
    [2] Ayoub NA, Mcgowen MR, Clark C, Springer MS, Gatesy J. 2009. Evolution and phylogenetic utility of the melanocortin-1 receptor gene (MC1R) in Cetartiodactyla. Molecular Phylogenetics and Evolution, 52(2): 550-557.
    [3] Baiao PC, Parker PG. 2012. Evolution of the melanocortin-1 receptor (MC1R) in boobies and gannets (aves, suliformes). Journal of Heredity, 103(3): 322-329.
    [4] Bar I, Kaddar E, Velan A, David L. 2013. Melanocortin receptor 1 and black pigmentation in the Japanese ornamental carp (Cyprinus carpio var. Koi). Frontiers in Genetics, 4: 6.
    [5] Bohlen J, Šlechtová V. 2009. Phylogenetic position of the fish genus Ellopostoma (Teleostei: Cypriniformes) using molecular genetic data. Ichthyological Exploration of Freshwaters, 20(2): 157-162.
    [6] Braasch I, Volff JN, Schartl M. 2008. The evolution of teleost pigmentation and the fish-specific genome duplication. Journal of Fish Biology, 73(8): 1891-1918.
    [7] Chen WJ, Lheknim V, Mayden RL. 2009. Molecular phylogeny of the Cobitoidea (Teleostei: Cypriniformes) revisited: position of enigmatic loach Ellopostoma resolved with six nuclear genes. Journal of Fish Biology, 75(9): 2197-2208.
    [8] Chen YF, Chen YX. 2005. Secondary sexual characters, pigmentary zones of Gambetta and taxonomical revision the genus Cobitis from China (Pisces, Cobitidae, Cobitinae). Acta Zootaxonomica Sinica, 30(4): 647-658. (in Chinese)
    [9] Chen YX, Sui XY, He DK, Chen YF. 2015. Three new species of cobitid fish genus Cobitis (Teleostei, Cobitidae) from the River Pearl basin of China. Folia Zoologica, 64(1): 1-16.
    [10] Cheviron ZA, Hackett SJ, Brumfield RT. 2006. Sequence variation in the coding region of the melanocortin-1 receptor gene (MC1R) is not associated with plumage variation in the blue-crowned manakin (Lepidothrix coronata). Proceedings of the Royal Society B-Biological Sciences, 273(1594): 1613-1618.
    [11] Corso J, Gonçalves GL, De Freitas TRO. 2012. Sequence variation in the melanocortin-1 receptor (MC1R) pigmentation gene and its role in the cryptic coloration of two South American sand lizards. Genetics and Molecular Biology, 35(1): 81-87.
    [12] Cox CL, Rabosky ARD, Chippindale PT. 2013. Sequence variation in the Mc1r gene for a group of polymorphic snakes. Gene, 513(2): 282-286.
    [13] Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8): 772.
    [14] Dorn A, Ng'oma E, Janko K, Reichwald K, Pola?ik M, Platzer M, Cellerino A, Reichard M. 2011. Phylogeny, genetic variability and colour polymorphism of an emerging animal model: The short-lived annual Nothobranchius fishes from southern Mozambique. Molecular Phylogenetics and Evolution, 61(3): 739-749.
    [15] Galtier N, Gouy M, Gautier C. 1996. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics, 12(6): 543-548.
    [16] Gross JB, Borowsky R, Tabin CJ. 2009. A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genetics, 5(1): e1000326.
    [17] Guindon S, Gascuel O. 2002. A simple, fast and accurate method to estimate large phylogenies by maximum likelihood. Systematic Biology, 52(5): 696-704..
    [18] Henning F, Renz AJ, Fukamachi S, Meyer A. 2010. Genetic, comparative genomic, and expression analyses of the Mc1r locus in the polychromatic Midas cichlid fish (Teleostei, Cichlidae Amphilophus sp.) species group. Journal of Molecular Evolution, 70(5): 405-412.
    [19] Herczeg G, Matsuba C, Merilä J. 2010. Sequence variation in the melanocortin-1 receptor gene (Mc1r) does not explain variation in the degree of melanism in a widespread amphibian. Annales Zoologici Fennici, 47(1): 37-45.
    [20] Hofreiter M, Schöneberg T. 2010. The genetic and evolutionary basis of colour variation in vertebrates. Cellular and Molecular Life Sciences, 67(15): 2591-2603.
    [21] Hubbard JK, Uy JAC, Hauber ME, Hoekstra HE, Safran RJ. 2010. Vertebrate pigmentation: from underlying genes to adaptive function. Trends in Genetics, 26(5): 231-239.
    [22] Kottelat M. 2012. Conspectus Cobitidum: an inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei). The Raffles Bulletin of Zoology, 26: 1-199.
    [23] Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23(21): 2947-2948.
    [24] Li C, Orti G, Zhang G, Lu G. 2007. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evolutionary Biology, 7: 44.
    [25] Liu SQ, Mayden RL, Zhang JB, Yu D, Tang QY, Deng X, Liu HZ. 2012. Phylogenetic relationships of the Cobitoidea (Teleostei: Cypriniformes) inferred from mitochondrial and nuclear genes with analyses of gene evolution. Gene, 508(1): 60-72.
    [26] Lu XM, Zhang YP. 2001. Molecular evolution of MC1R gene in human and non-human primates. American Journal of Human Genetics, 69(4): 355-355.
    [27] Mayden RL, Chen WJ, Bart HL, Doosey MH, Simons AM, Tang KL, Wood RM, Agnew MK, Yang L, Hirt MV, Clements MD, Saitoh K, Sado T, Miya M, Nishida M. 2009. Reconstructing the phylogenetic relationships of the earth's most diverse clade of freshwater fishes-order Cypriniformes (Actinopterygii: Ostariophysi): A case study using multiple nuclear loci and the mitochondrial genome. Molecular Phylogenetics and Evolution, 51(3): 500-514.
    [28] Mundy NI. 2005. A window on the genetics of evolution: MC1R and plumage colouration in birds. Proceedings of the Royal Society B-Biological Sciences, 272(1573): 1633-1640.
    [29] Nelson JS, Grande TC, Wilson MVH. 2016. Fishes of the World. 5th ed. New Jersey: John Wiley & Sons, Inc.
    [30] Nunes VL, Miraldo A, Beaumont MA, Butlin RK, Paulo OS. 2011. Association of Mc1r variants with ecologically relevant phenotypes in the European ocellated lizard, Lacerta lepida. Journal of Evolutionary Biology, 24(10): 2289-2298.
    [31] Parichy DM. 2003. Pigment patterns: fish in stripes and spots. Current Biology, 13(24): R947-R950.
    [32] Pérez T, Essler S, Palacios B, Albornoz J, Domínguez A. 2013. Evolution of the melanocortin-1 receptor gene (MC1R) in chamois (Rupicapra spp.). Molecular Phylogenetics and Evolution, 67(3): 621-625.
    [33] Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12): 1572-1574.
    [34] Rosenblum EB, Hoekstra HE, Nachman MW. 2004. Adaptive reptile color variation and the evolution of the Mc1r gene. Evolution, 58(8): 1794-1808.
    [35] Selz Y, Braasch I, Hoffmann C, Schmidt C, Schultheis C, Schartl M, Volff JN. 2007. Evolution of melanocortin receptors in teleost fish: the melanocortin type 1 receptor. Gene, 401(1-2): 114-122.
    [36] Šlechtová V, Bohlen J, Freyhof J, Ráb P. 2006. Molecular phylogeny of the Southeast Asian freshwater fish family Botiidae (Teleostei: Cobitoidea) and the origin of polyploidy in their evolution. Molecular Phylogenetics and Evolution, 39(2): 529-541.
    [37] Šlechtová V, Bohlen J, Tan HH. 2007. Families of Cobitoidea (Teleostei; Cypriniformes) as revealed from nuclear genetic data and the position of the mysterious genera Barbucca, Psilorhynchus, Serpenticobitis and Vaillantella. Molecular Phylogenetics and Evolution, 44(3): 1358-1365.
    [38] Stamatakis A. 2014. RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312-1313.
    [39] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6. 0. Molecular Biology and Evolution, 30(12): 2725-2729.
    [40] Tang QY, Freyhof J, Xiong BX, Liu HZ. 2008. Multiple invasions of europe by east asian cobitid loaches (Teleostei: Cobitidae). Hydrobiologia, 605(1): 17-28.
    [41] Tang QY, Liu HZ, Mayden R, Xiong BX. 2006. Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei: Cypriniformes). Molecular Phylogenetics and Evolution, 39(2): 347-357.
    [42] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24): 4876-4882.
    [43] Whelan S, Goldman N. 1999. Distributions of statistics used for the comparison of models of sequence evolution in phylogenetics. Molecular Biology and Evolution, 16(9): 1292-1299.
    [44] Xia XH. 2013. DAMBE5: A comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 30(7): 1720-1728.
    [45] Yang ZH. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8): 1586-1591.
    [46] Yang ZH, Wong WSW, Nielsen R. 2005. Bayes empirical Bayes inference of amino acid sites under positive selection. Molecular Biology and Evolution, 22(4): 1107-1118.
    [47] Zhang XJ, Yao DR, Yan BL, Bi KR, Liang LG, Qin GM. 2012. Identification of Vibrio cholerae as a causative bacterium for an ulcer disease of cultured loach Misgurnus anguillicaudatus in China. African Journal of Microbiology Research, 6(9): 2060-2070.
  • [1] Kai He, Xing Chen, Peng Chen, Shui-Wang He, Feng Cheng, Xue-Long Jiang, Kevin Campbell.  A new genus of Asiatic short-tailed shrew (Soricidae, Eulipotyphla) based on molecular and morphological comparisons, Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.058
    [2] Qiang CHEN, Xin-Jiang LU, Ming-Yun LI, Jiong CHEN.  Molecular cloning, pathologically-correlated expression and functional characterization of the colonystimulating factor 1 receptor (CSF-1R) gene from a teleost, Plecoglossus altivelis, Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.2.96
    [3] Jun WU, Yu-Hong SHI, Xue-Heng ZHANG, Chang-Hong LI, Ming-Yun LI, Jiong CHEN.  Molecular characterization of an IL-1β gene from the large yellow croaker (Larimichthys crocea) and its effect on fish defense against Vibrio alginolyticus infection, Zoological Research.
    [4] Wei-Ying WANG, Wei ZHOU, Jun-Xing YANG, Xiao-Yong CHEN.  Morphological and molecular studies on Garra imberba and its related species in China, Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.1.020
    [5] CHEN Xing, SHEN Yong-Yi, ZHANG Ya-Ping.  Review of mtDNA in molecular evolution studies, Zoological Research. doi: 10.3724/SP.J.1141.2012.06566
    [6] CHANG Yue, FENG Li-Fang, XIONG Jie, MIAO Wei.  Function comparison and evolution analysis of metallothionein gene MTT2 and MTT4 in Tetrahymena thermophila, Zoological Research. doi: 10.3724/SP.J.1141.2011.05476
    [7] LIU Si-Qing, ZHANG Jia-Bo, TANG Qiong-Ying, LIU Huan-Zhang.  Phylogenetic Relationships Among Cobitoidea Based on Mitochondrial ND4 and ND5 Gene Sequences, Zoological Research.
    [8] LIU Dian-feng, DONG Zi-mei, ZHANG Da-yu, GU Yan-ze, GUO Pei-jun, HAN Rui-hua.  Molecular Phylogeny of the Higher Category of Acrididae (Orthoptera: Acridoidea), Zoological Research. doi: 10.3724/SP.J.1141.2008.06585
    [9] LEI Xin, LIAN Zhen-min, LEI Fu-min, *, YIN Zuo-hua, ZHAO Hong-fengPhylogeny of Some Muscicapinae Genera and Species Inferred from Mitochondrial Gene COI Sequences, Zoological Research.
    [10] GAO Jia-li, LUO Yu-ping*, LI Si-guang.  Molecular Evolution of miR-34 Gene Family, Zoological Research.
    [11] WU Gui-sheng , PANG Jun-feng , ZHANG Ya-ping , *Molecular Phylogeny and Phylogeography of Suidae, Zoological Research.
    [12] LI Hong-mei, DENG Ri-qiang, WANG Xun-zhang , *Phylogenetic Relationships of the Pentatomomorpha (Hemiptera: Heteroptera) Inferred from Nuclear 18S rDNA Sequences, Zoological Research.
    [13] DONG Peng, WANG Jin-jun.  Molecular Detection of Wolbachia wsp Gene in Liposcelis tricolor (Psocoptera:Liposcelididae), Zoological Research.
    [14] CHEN Jing-hua, Paul CROW, Etsuo NARUSHIMA, ZHANG Hong-wei, ZHANG Ya-ping.  Molecular Phylogeny of Slow Lorises (Nycticebus) Revealed by D-loop Sequences and Complete Cytochrome b Gene Sequences of Mitochondrial DNA, Zoological Research.
    [15] BAO Lei, NIU Cui-juan, MA Rui LI Qing-fen.  Sequences and Phylogeny of Partial Mitochondrial COⅠ Gene from Four Brachionus Species, Zoological Research.
    [16] SHAO Zhi-yong-, MAO Hong-xin, FU Wen-jun, ZHANG Ya-ping.  Phylogenetic Relationships of 11 Bumblebee Species (Hymenoptera:Apidae) Based on Mitochondrial Cytochrome b Gene Sequences, Zoological Research.
    [17] LU Xue-Mei, WANG Ying-Xiang, ZHANG Ya-Ping.  Divergence and Phylogeny of Mitochondrial Cytochrome b Gene from Species in Nycticebus, Zoological Research.
    [18] SU Bing, WANG Ying-Xiang, WANG Qi-Shan.  Mitochondrial DNA Sequences Imply Anhui Musk Deer a Valid Species in Genus Moschus, Zoological Research.
    [19] ZHENG Xiang-zhong, ZHANG Ya-ping, ZHU Ding-liang, GENG Zhen-cheng.  The Molecular Biology of The Biological Clock Gene,Period The Molecular Biology of The Biological Clock Gene,Period, Zoological Research.
    [20] HUANG Jing-fei, LIU Ci-quan.  The Relationship Between Cytochrome Hydrophobicity and Molecular Evolution, Zoological Research.
  • 加载中
计量
  • 文章访问数:  507
  • HTML全文浏览量:  25
  • PDF下载量:  822
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-01
  • 修回日期:  2016-08-15
  • 刊出日期:  2016-09-18

目录

    /

    返回文章
    返回