留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lamprey: a model for vertebrate evolutionary research

Yang XU Si-Wei ZHU Qing-Wei LI

Yang XU, Si-Wei ZHU, Qing-Wei LI. Lamprey: a model for vertebrate evolutionary research. Zoological Research, 2016, 37(5): 263-269. doi: 10.13918/j.issn.2095-8137.2016.5.263
Citation: Yang XU, Si-Wei ZHU, Qing-Wei LI. Lamprey: a model for vertebrate evolutionary research. Zoological Research, 2016, 37(5): 263-269. doi: 10.13918/j.issn.2095-8137.2016.5.263

七鳃鳗:脊椎动物进化研究的模型

doi: 10.13918/j.issn.2095-8137.2016.5.263
基金项目: This study was supported by the National Program on Key Basic Research Project (973 Program)(2013CB835304), National Natural Science Foundation of China (31501911), General Scientific Research Foundation of Liaoning Educational Committee (L2015293) and Youth Scientific Research Project of Liaoning Normal University (LS2014L008)
详细信息
    通讯作者:

    Qing-Wei LI

Lamprey: a model for vertebrate evolutionary research

More Information
    Corresponding author: Qing-Wei LI
  • 摘要: 七鳃鳗,属圆口纲,是迄今最古老的脊椎动物。它们出现于三亿六千万年前,在漫长的生物进化历程中体貌特征基本保持不变,被喻为"活化石"。七鳃鳗不仅是研究脊椎动物起源与进化的关键物种,同时也是研究脊椎动物胚胎发育和器官分化的最佳模型。从遗传信息来看,七鳃鳗的基因组较其他高等脊椎动物更加原始,并具有大量的功能基因。随着科学技术的发展,科学家对七鳃鳗的神经系统、内分泌系统、免疫系统等方面进行了深入研究。这些研究对于理解和揭示脊椎动物的起源和进化具有重要意义,将为治疗人类疾病等重大问题做出巨大贡献。本文对当前七鳃鳗研究的进展和意义进行了综述。
  • [1] Bajoghli B, Guo P, Aghaallaei N, Hirano M, Strohmeier C, McCurley N, Bockman DE, Schorpp M, Cooper MD, Boehm T. 2011. A thymus candidate in lampreys. Nature, 470(7332): 90-94.
    [2] Birceanu O, Sorensen LA, Henry M, McClelland GB, Wang YS, Wilkie MP. 2014. The effects of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) on fuel stores and ion balance in a non-target fish, the rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 160: 30-41.
    [3] Biró Z, Hill RH, Grillner S. 2008. The activity of spinal commissural interneurons during fictive locomotion in the lamprey. Journal of Neurophysiology, 100(2): 716-722.
    [4] Boehm T, McCurley N, Sutoh Y, Schorpp M, Kasahara M, Cooper MD. 2012. VLR-based adaptive immunity. Annual Review of Immunology, 30(1): 203-220.
    [5] Cinelli E, Mutolo D, Robertson B, Grillner S, Contini M, Pantaleo T, Bongianni F. 2014. GABAergic and glycinergic inputs modulate rhythmogenic mechanisms in the lamprey respiratory network. The Journal of Physiology, 592(8): 1823-1838.
    [6] Cooper MD, Alder MN. 2006. The evolution of adaptive immune systems. Cell, 124(4): 815-822.
    [7] Decatur WA, Hall JA, Smith JJ, Li WM, Sower SA. 2013. Insight from the lamprey genome: glimpsing early vertebrate development via neuroendocrine-associated genes and shared synteny of gonadotropin-releasing hormone (GnRH). General and Comparative Endocrinology, 192: 237-245.
    [8] Du Pasquier L. 2005. Meeting the demand for innate and adaptive immunities during evolution. Scandinavian Journal of Immunology, 62(S1): 39-48.
    [9] Ericsson J, Stephenson-Jones M, Pérez-Fernández J, Robertson B, Silberberg G, Grillner S. 2013. Dopamine differentially modulates the excitability of striatal neurons of the direct and indirect pathways in lamprey. Journal of Neuroscience, 33(18): 8045-8054.
    [10] Freamat M, Sower SA. 2010. Functional divergence of glycoprotein hormone receptors. Integrative and Comparative Biology, 50(1): 110-123.
    [11] Freamat M, Sower SA. 2013. Integrative neuro-endocrine pathways in the control of reproduction in lamprey: a brief review. Frontiers in Endocrinology, 4: 151.
    [12] Fujii T, Nakagawa H, Murakawa S. 1979. Immunity in lamprey II. Antigen-binding responses to sheep erythrocytes and hapten in the ammocoete. Developmental & Comparative Immunology, 3: 609-620.
    [13] Fuller MF, Tomé D. 2005. In vivo determination of amino acid bioavailability in humans and model animals. Journal of AOAC International, 88(3): 923-934.
    [14] Gess RW, Coates MI, Rubidge BS. 2006. A lamprey from the Devonian period of South Africa. Nature, 443(7114): 981-984.
    [15] Herrin BR, Alder MN, Roux KH, Sina C, Ehrhardt GRA, Boydston JA, Turnbough CL Jr, Cooper MD. 2008. Structure and specificity of lamprey monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America, 105(6): 2040-2045.
    [16] Hirano M, Das S, Guo P, Cooper MD. 2011. The evolution of adaptive immunity in vertebrates. Advances in Immunology, 109: 125-157.
    [17] Holland LZ, Holland ND. 2001. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate? Journal of Anatomy, 199(1-2): 85-98.
    [18] Janvier P. 2006. Palaeontology: modern look for ancient lamprey. Nature, 443(7114): 921-924.
    [19] Janvier P. 2008. Early jawless vertebrates and cyclostome origins. Zoological Science, 25(10): 1045-1056.
    [20] Kamali Sarvestani I, Kozlov A, Harischandra N, Grillner S, Ekeberg Ö. 2013. A computational model of visually guided locomotion in lamprey. Biological Cybernetics, 107(5): 497-512.
    [21] Kinkead R. 2009. Phylogenetic trends in respiratory rhythmogenesis: insights from ectothermic vertebrates. Respiratory Physiology & Neurobiology, 168(1-2): 39-48.
    [22] Kuratani S. 2005. Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw. Journal of Anatomy, 207(5): 489-499.
    [23] Kuratani S, Kuraku S, Murakami Y. 2002. Lamprey as an evo-devo model: lessons from comparative embryology and molecular phylogenetics. Genesis, 34(3): 175-183.
    [24] Manzon RG, Youson JH. 1999. Temperature and KClO4-induced metamorphosis in the sea lamprey (Petromyzon marinus). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 124(3): 253-257.
    [25] Ménard A, Grillner S. 2008. Diencephalic locomotor region in the lamprey-afferents and efferent control. Journal of Neurophysiology, 100(3): 1343-1353.
    [26] Murakami Y, Kuratani S. 2008. Brain segmentation and trigeminal projections in the lamprey; with reference to vertebrate brain evolution. Brain Research Bulletin, 75(2-4): 218-224.
    [27] Murakami Y, Watanabe A. 2009. Development of the central and peripheral nervous systems in the lamprey. Development, Growth & Differentiation, 51(3): 197-205.
    [28] Nikitina N, Bronner-Fraser M, Sauka-Spengler T. 2009. The sea lamprey Petromyzon marinus: a model for evolutionary and developmental biology. Cold Spring Harbor Protocols, doi:  10.1101/pdb.emo113.
    [29] Pancer Z, Amemiya CT, Ehrhardt GRA, Ceitlin J, Gartland GL, Cooper MD. 2004. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature, 430(6996): 174-180.
    [30] Pang Y, Wang S, Ba W, Li Q. 2015. Cell secretion from the adult lamprey supraneural body tissues possesses cytocidal activity against tumor cells. Springerplus, 4:569.
    [31] Piavis GW. 1961. Embryological stages in the sea lamprey and effect of temperature on development. U.S. Fish and Wildlife Service Fish Bulletin, 61: 111–143.
    [32] Potter IC, Robinson ES, Walton SM. 1968. The mitotic chromosomes of the lamprey Mordacia mordax (Agnatha: Petromyzonidae). Experientia, 24(9): 966-967.
    [33] Reese AM. 1900. Lampreys in captivity. Science, 11(275): 555.
    [34] Rétaux S, Kano S. 2010. Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey Hedgehog case. Integrative and Comparative Biology, 50(1): 98-109.
    [35] Roberts BW, Didier W, Rai S, Johnson NS, Libants S, Yun SS, Close DA. 2014. Regulation of a putative corticosteroid, 17, 21-dihydroxypregn-4-ene, 3, 20-one, in sea lamprey, Petromyzon marinus. General and Comparative Endocrinology, 196: 17-25.
    [36] Saitoh K, Ménard A, Grillner S. 2007. Tectal control of locomotion, steering, and eye movements in lamprey. Journal of Neurophysiology, 97(4): 3093-3108.
    [37] Shimeld SM, Donoghue PCJ. 2012. Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development, 139(12): 2091-2099.
    [38] Shintani S, Terzic J, Sato A, Saraga-Babic M, O'hUigin C, Tichy H, Klein J. 2000. Do lampreys have lymphocytes? The Spi evidence. Proceedings of the National Academy of Sciences of the United States of America, 97(13): 7417-7422.
    [39] Su P, Liu X, Han YL, Zheng Z, Liu G, Li J, Li QW. 2013. Identification and characterization of a novel IκB-ε-like gene from lamprey (Lampetra japonica) with a role in immune response. Fish & Shellfish Immunology, 35(4): 1146-1154.
    [40] Sun J, Liu X, Li QW. 2010. Molecular cloning, expression and antioxidant activity of a peroxiredoxin 2 homologue from Lampetra japonica. Fish & Shellfish Immunology, 28(5-6): 795-801.
    [41] Sun J, Wu Y, Wang JH, Ma F, Liu X, Li QW. 2008. Novel translationally controlled tumor protein homologue in the buccal gland secretion of Lampetra japonica. Biochimie, 90(11-12): 1760-1768.
    [42] Wang JH, Han XX, Yang HS, Lu L, Wu Y, Liu X, Guo RY, Zhang Y, Zhang YQ, Li QW. 2010. A novel RGD-toxin protein, Lj-RGD3, from the buccal gland secretion of Lampetra japonica impacts diverse biological activities. Biochimie, 92(10): 1387-1396.
    [43] Wu FF, Zhao J, Chen LY, Liu X, Su P, Han YL, Feng B, Li QW. 2012. A novel BTK-like protein involved in immune response in Lethenteron japonicum. Immunology Letters, 146(1-2): 57-63.
    [44] Xiao R, Pang Y, Li QW. 2012. The buccal gland of Lampetra japonica is a source of diverse bioactive proteins. Biochimie, 94(5):1075-1079.
    [45] Youson JH, Sower SA. 2001. Theory on the evolutionary history of lamprey metamorphosis: role of reproductive and thyroid axes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 129(2-3): 337-345.
    [46] Zhao CH, Feng B, Cao Y, Xie P, Xu J, Pang Y, Liu X, Li QW. 2013. Identification and characterisation of ROS modulator 1 in Lampetra japonica. Fish & Shellfish Immunology, 35(2): 278-283.
  • [1] Yang Yang, Li-Na Wu, Jing-Fang Chen, Xi Wu, Jun-Hong Xia, Zi-Ning Meng, Xiao-Chun Liu, Hao-Ran Lin.  Whole-genome sequencing of leopard coral grouper (Plectropomus leopardus) and exploration of regulation mechanism of skin color and adaptive evolution, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.038
    [2] Jing YANG, Xin-Jiang LU, Fang-Chao CHAI, Jiong CHEN.  Molecular characterization and functional analysis of a piscidin gene in large yellow croaker (Larimichthys crocea), Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.6.347
    [3] YIN Hai-ping, XU Jian-ping, ZHOU Xian-qing.  Effects of Vitamin E on Reproduction Endocrine and Ovary Structures in Mice Acutely Treated with TCDD, Zoological Research. doi: 10.3724/SP.J.1141.2008.03265
    [4] YAO Cui-luan, WANG Zhi-yong , *, XIANG Jian-hai.  Crustacean Haemocytes and Their Function in Immune Responses, Zoological Research.
    [5] LI Shu-lan, CHEN Xia, ZHAO Wen-ge.  Distribution and Morphological Observation of 5-HT Positive Immunoreactive Endocrine Cells in Digestive Tract of Elaphe dione, Zoological Research.
    [6] ZHU Dao-hong, YAN Bo-su.  Endocrine Mechanisms Controlling Phase Polymorphism and Body-color Polymorphism in Locusta migratoria, Zoological Research.
    [7] LIU Bin, ZENG Shao-ju, LIN Yong-da, ZHANG Chun-lei, LI Fu-lai.  Location of Endocrine Cells in the Gastrointestinal Tract of White Ibis, Zoological Research.
    [8] WEI Rong-bian, QIU Gao-feng, LOU Yun-don.  Nerve Terminal Types of Sinus Gland and Neurosecretory Cell Types of X-organ in Crab Eriocheir sinensis, Zoological Research.
    [9] ZHU Dao-Li.  Neurotropic Effect Mechanism of Target on Peripheral Nerve Regeneration, Zoological Research.
    [10] ZHOU Xian-Qing, SUN Ru-Yong, NIU Cui-Juan.  The Effects of Stress on Aquatic Animal's Growth,Behavior and Physiological Activity, Zoological Research.
    [11] HOU Ya-yi, HAN Xiao-dong, SUZUKI Yuzuru, AIDA Katsumi.  Immune Function of Immature Rainbow Trout (Oncorhynchus mykiss) Related With Photoperiod, Zoological Research.
    [12] YUAN Wei-jia, H.Stieve.  The Influence of Extra- and Intracellular Calcium on Theadaptation of Limulus polyphemus Ventral Nerve Photoreceptors, Zoological Research.
    [13] FLI Pi-peng.  The Existence of Apud Cells in Immune Organs of Vertebrates and Their Properties, Zoological Research.
    [14] PAN Xing-hua, WANG Shui-qin, CHEN Zhi-long.  The Correlations Between Glucocorticoid Receptor and Immune Functions in Cock, Zoological Research.
    [15] LI Yuan-you, LIN Hao-ran SHEN Fang.  Endocrine Regulation of The Frog Hypothalamus-Pituitary-Gonad Axis, Zoological Research.
    [16] YU Fa-rong, CAI Jing-xia, YU Fa-hong, Xu Lin, PENG Yan-ping.  Analysis of The Influencing Factors on the Products of Hrp-Tmb Reaction At Ultrastructural level in Nerve-Tract Track, Zoological Research.
    [17] XIA Li-qun, WANG Qing-tang.  Immunocytochemical Study of The Endocrine Cells in The Gastrointerstinal Tract of Ophiocephalus argus, Zoological Research.
    [18] BEN Kun-long.  Mucosal Immune System and Fertility Regulation in Mammal and Human, Zoological Research.
    [19] JIANG Lian-hai, JIANG Zhi-hua, SHEN E.  Observations on Fiber Cotent of the Nerve Innervating Submandibular Gland and its Preganglionic Neurons in the Brainstem of the cat, Zoological Research.
    [20] LIU Da-kun et al..  Preliminary Observation of Mitosis in the Cerebellar Cortex Nerve Cell of Rabbit Under Experimental Injury, Zoological Research.
  • 加载中
计量
  • 文章访问数:  702
  • HTML全文浏览量:  62
  • PDF下载量:  1047
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-10
  • 修回日期:  2016-08-03
  • 刊出日期:  2016-09-18

目录

    /

    返回文章
    返回