留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of temperature acclimation on body mass and energy budget in the Chinese bulbul Pycnonotus sinensis

Yu-Nan WU Lin Lin Yu-Chao XIAO Li-Meng Zhou Meng-Si WU Hui-Ying Zhang Jin-Song LIU

Yu-Nan WU, Lin Lin, Yu-Chao XIAO, Li-Meng Zhou, Meng-Si WU, Hui-Ying Zhang, Jin-Song LIU. Effects of temperature acclimation on body mass and energy budget in the Chinese bulbul Pycnonotus sinensis. Zoological Research, 2014, 35(1): 33-41. doi: 10.11813/j.issn.0254-5853.2014.1.033
Citation: Yu-Nan WU, Lin Lin, Yu-Chao XIAO, Li-Meng Zhou, Meng-Si WU, Hui-Ying Zhang, Jin-Song LIU. Effects of temperature acclimation on body mass and energy budget in the Chinese bulbul Pycnonotus sinensis. Zoological Research, 2014, 35(1): 33-41. doi: 10.11813/j.issn.0254-5853.2014.1.033

Effects of temperature acclimation on body mass and energy budget in the Chinese bulbul Pycnonotus sinensis

doi: 10.11813/j.issn.0254-5853.2014.1.033
基金项目: This study was supported by the National Natural Science Foundation of China (31070366) and the ‘Xinmiao’ Project in Zhejiang Province.
详细信息
    通讯作者:

    Jin-Song LIU

Effects of temperature acclimation on body mass and energy budget in the Chinese bulbul Pycnonotus sinensis

  • 摘要: Chinese bulbuls (Pycnonotus sinensis) are small passerine birds that inhabit areas of central, southern and eastern China. Previous observations suggest that free-living individuals of this species may change their food intake in response to seasonal changes in ambient temperature. In the present study, we randomly assigned Chinese bulbuls to either a 30℃ or 10℃ group, and measured their body mass (BM), body temperature, gross energy intake (GEI), digestible energy intake (DEI), and the length and mass of their digestive tracts over 28 days of acclimation at these temperatures. As predicted, birds in the 30℃ group had lower body mass, GEI and DEI relative to those in the 10℃ group. The length and mass of the digestive tract was also lower in the 30℃ group and trends in these parameters were positively correlated with BM, GEI and DEI. These results suggest that Chinese bulbuls reduced their absolute energy demands at relatively high temperatures by decreasing their body mass, GEI and DEI, and digestive tract size.
  • [1] Bednekoff PA, Biebach H, Krebs J. 1994. Great tit fat reserves under unpredictable temperatures. Journal of Avian Biology, 25(2): 156-160.
    [2] Boon P, Visser GH, Daan S. 2000. Effect of photoperiod on body weight gain, and daily energy intake and energy expenditure in Japanese quail (Coturnix c. japonica). Physiology and Behavior, 70(3-4): 249-260.
    [3] Bryant DM, Hails CJ, Prys-Jones R. 1985. Energy expenditure by free-living dippers (Cinclus cinclus) in winter. The Condor, 87(2): 177-186.
    [4] Cain BW. 1973. Effect of temperature on energy requirements and northward distribution of the black-bellied tree duck. The Wilson Bulletin, 85(3): 308-317.
    [5] Caviedes-Vidal E, McWhorter TJ, Lavin SR, Chediack JG, Tracy CR, Karasov WH. 2007. The digestive adaptation of flying vertebrates: High intestinal paracellular absorption compensates for smaller guts. Proceedings of the National Academy of Sciences of the United States of America, 104(48): 19132-19137.
    [6] Cooper SJ. 2007. Daily and seasonal variation in body mass and visible fat in mountain chickadees and juniper titmice. The Wilson Journal of Ornithology, 119(4): 720-724.
    [7] DeGolier TF, Mahoney SA, Duke GE. 1999. Relationship of avian cecal lengths to food habits, taxonomic position, and intestinal lengths. The Condor, 101(3): 622-634.
    [8] Goymann W, Trappschuh M, Jensen W, Schwabl I. 2006. Low ambient temperature increases food intake and dropping production, leading to incorrect estimates of hormone metabolite concen­trations in European stonechats. Hormones and Behavior, 49(5): 644-653.
    [9] Grodzinski W, Wunder BA. 1975. Ecological energetics of small mammals. In: Golley FB, Petrusewicz K, Ryszkowski L, eds. Small Mammals: Their Productivity and Population Dynamics. Cambridge: Cambridge University Press, 173-204.
    [10] Hammond KA, Diamond J. 1997. Maximal sustained energy budgets in humans and animals. Nature, 386(6624): 457-462.
    [11] Karasov WH. 2011. Digestive physiology: a view from molecules to ecosystem. American Journal of Physiology, 301(2): R276-R284.
    [12] Karasov WH, Pinshow B, Starck JM, Afik D. 2004. Anatomical and histological changes in the alimentary tract of migrating Blackcaps (Sylvia atricapilla): A comparison among fed, fasted, food-restricted, and refed birds. Physiological and Biochemical Zoology, 77(1): 149-160.
    [13] Karasov WH, Martínez del Rio C, Caviedes-Vidal E. 2011. Ecological physiology of diet and digestive systems. Annual Review of Physiology, 73(1): 69-93.
    [14] Klaassen M, Oltrogge M, Trost L. 2004. Basal metabolic rate, food intake, and body mass in cold-and warm-acclimated Garden Warblers. Comparative Biochemistry and Physiology Part A, 137(4): 639-647.
    [15] Krams I, Cirule D, Suraka V, Krama T, Rantala MJ, Ramey G. 2010. Fattening strategies of wintering great tits support the optimal body mass hypothesis under conditions of extremely low ambient temperature. Functional Ecology, 24(1): 172-177.
    [16] Lavin SR, Karasov WH, Ives AR, Middleton KM, Garland TJr. 2008. Morphometrics of the avian small intestine compared with that of nonflying mammals: a phylogenetic approach. Physiological and Biochemical Zoology, 81(5): 526-550.
    [17] Li DM, Wang AZ, Lei FM. 2006. A new bird record in Qinghai Province-Pycnonotus sinensis. Chinese Journal of Zoology, 41(4): 70. (in Chinese)
    [18] Liu JS, Li M. 2006. Phenotypic flexibility of metabolic rate and organ masses among tree sparrows Passer montanus in seasonal acclimatization. Acta Zoologica Sinica, 52(3): 469-477.
    [19] Lou Y, Yu TL, Huang CM, Zhao T, Li HH, Li CJ. 2013. Seasonal variations in the energy budget of Elliot’s pheasant (Syrmaticus ellioti) in cage. Zoological Research, 34(E1): E19-E25.
    [20] MacKinnon J, Phillipps K. 2000. A Field Guide to the Birds of China. London: Oxford University Press, 491-493.
    [21] McWilliams SR, Karasov WH. 2001. Phenotypic flexibility in digestive system structure andfunction in migratory birds and its ecological significance. Comparative Biochemistry and Physiology Part A, 128(3): 577-591.
    [22] McKinney RA, McWilliams SR. 2005. A new model to estimate daily energy expenditure for wintering waterfowl. The Wilson Bulletin, 117(1): 44-55.
    [23] McKechnie AE, Chetty K, Lovegrove BG. 2007. Phenotypic flexibility in basal metabolic rate in laughing doves: responses to short-term thermal acclimation. Journal of Experimental Biology, 210(1): 97-106.
    [24] Ni XY, Lin L, Zhou FF, Wang XH, Liu JS. 2010. Effects of photoperiod on body mass, organ masses and energy metabolism in Chinese bulbul (Pycnonotus sinensis). Acta Ecology Sinica, 31(6): 1703-1713. (in Chinese)
    [25] O’Connor TP. 1995. Metabolic characteristics and body composition in House Finches: effects of seasonal acclimatization. Journal of Comparative Physiology B, 165(4): 298-305.
    [26] Pendergast BA, Boag DA. 1973. Seasonal changes in the internal anatomy of spruce grouse in Alberta. The Auk, 90(2): 307-317.
    [27] Peng LJ, Tang XL, Liu JS, Meng HT. 2010. The effects of thyroid hormone on basal thermogenesis (Pycnonotus sinensis). Acta Ecologica Sinica, 30(6): 1500-1507. (in Chinese)
    [28] Piersma T, Drent J. 2003. Phenotypic flexibility and the evolution of organismal design. Trends Ecology and Evolution, 18(5): 228-233.
    [29] Salvante KG, Vézina F, Williams TD. 2010. Evidence for within-individual energy reallocation in cold-challenged, egg-producing birds. Journal of Experimental Biology, 213(12): 1991-2000.
    [30] Sibly RM. 1981. Strategies in digestion and defecation. In: Townsend CR, Calow P. Physiological Ecology: An Evolutionary Approach to Resource Use. Oxford: Blackwell, 109-139.
    [31] Song ZM. 2006. A new bird record in Northeast: Pycnonotus sinensis. Journal of Mudanjiang Normal University: Natural Science, 54: 1-2. (in Chinese)
    [32] Starck JM. 1996. Phenotypic plasticity, cellular dynamics, and epithelial turnover of the intestine of Japanese quail (Coturnix coturnix japonica). Journal of Zoology, 238(1): 53-79.
    [33] Starck JM. 1999. Phenotypic flexibility of the avian gizzard: rapid, reversible and repeated changes of organ size in response to changes in dietary fibre content. Journal of Experimental Biology, 202(22): 3171-3179.
    [34] Starck JM, Rahmaan GHA. 2003. Phenotypic flexibility of structure and function of the digestive system of Japanese quail. Journal of Experimental Biology, 206(11): 1887-1897.
    [35] Stokkan KA, Mortensen A, Blix AS. 1986. Food intake, feeding rhythm, and body mass regulation in Svalbard rock ptarmigan. American Journal of Physiology, 251(2): R264-R267.
    [36] Swanson DL. 2001. Are summit metabolism and thermogenic endurance correlated in winter- acclimatized passerine birds? Journal of Comparative Physiology B, 171(6): 475-481.
    [37] Swanson DL. 2010. Seasonal metabolic variation in birds: functional and mechanistic correlates. In: Thompson CF. Current Ornithology. Berlin: Springer, 17: 75-129.
    [38] Syafwan S, Wermink GJD, Kwakkel RP, Verstegen MWA. 2012. Dietary self-selection by broilers at normal and high temperature changes feed intake behavior, nutrient intake, and performance. Poultry Science, 91(3): 537-549.
    [39] Tieleman BI, Williams JB, Buschur ME, Brown CR. 2003. Phenotypic variation of larks along an aridity gradient: are desert birds more flexible? Ecology, 84(7): 1800-1815.
    [40] Vézina F, Jalvingh K, Dekinga A, Piersma T. 2006. Acclimation to different thermal conditions in a northerly wintering shorebird is driven by body mass-related changes in organ size. Journal of Experimental Biology, 209(16): 3141-3154.
    [41] Webster MD, Weathers WW. 2000. Seasonal changes in energy and water use by verdins, Auriparus flaviceps. Journal of Experimental Biology, 203(21): 3333-3344.
    [42] Williams J, Tieleman BI. 2000. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. Journal of Experimental Biology, 203(20): 3153-3159.
    [43] Yuni LPEK, Rose RW. 2005. Metabolism of winter-acclimatized New Holland honeyeaters Phylidonyris novaehollandiae from Hobart, Tasmania. Acta Zoologica Sinica, 51(2): 338-343.
    [44] Zhang GK, Fang YY, Jiang XH, Liu JS, Zhang YP. 2008. Adaptive plasticity in metabolic rate and organ masses among Pycnonotus sinensis, in seasonal acclimatization. Chinese Journal of Zoology, 43(4): 13-19. (in Chinese)
    [45] Zhang YP, Liu JS, Hu XJ, Yang Y, Chen LD. 2006. Metabolism and thermoregulation in two species of passerines from south-eastern China in summer. Acta Zoologica Sinica, 52(4): 641-647.
    [46] Zheng WH, Li M, Liu JS, Shao SL. 2008a. Seasonal acclimatization of metabolism in Eurasian tree sparrows (Passer montanus). Comparative Biochemistry and Physiology Part A, 151(4): 519-525.
    [47] Zheng WH, Liu JS, Jang XH, Fang YY, Zhang GK. 2008b. Seasonal variation on metabolism and thermoregulation in Chinese bulbul. Journal of Thermal Biology, 33(6): 315-319.
    [48] Zheng WH, Fang YY, Jang XH, Zhang GK, Liu JS. 2010. Comparison of thermogenic character of liver and muscle in Chinese bulbul Pycnonotus sinensis between summer and winter. Zoological Research, 31(3): 319-327. (in Chinese)
    [49] Zheng WH, Lin L, Liu JS, Pan H, Cao MT, Hu YL. 2013. Physiological and biochemical thermoregulatory responses of Chinese bulbuls Pycnonotus sinensis to warm temperature: Phenotypic flexibility in a small passerine. Journal of Thermal Biology, 38(5): 483-490.
    [50] Zhou W, Wang YP, Chen DH, Liu JS. 2010. Diurnal rhythms of Chinese bulbul (Pycnonotus sinensis) body temperature, body mass, and energy metabolism. Chinese Journal of Ecology, 29(12): 2395-2400. (in Chinese)
  • [1] Jia-Qi WANG, Jia-Jia WANG, Xu-Jian WU, Wei-Hong ZHENG, Jin-Song LIU.  Short photoperiod increases energy intake, metabolic thermogenesis and organ mass in silky starlings Sturnus sericeus, Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.2.75
    [2] Qing-Jian LIANG, Lei ZHAO, Jia-Qi WANG, Qian CHEN, Wei-Hong ZHENG, Jin-Song LIU.  Effect of food restriction on the energy metabolism of the Chinese bulbul (Pycnonotus sinensis), Zoological Research.
    [3] Zhi-Jun ZHAO, Yong-An LIU, Jing-Ya XING, Mao-Lun ZHANG, Xiao-Ying NI, Jing CAO.  The role of leptin in striped hamsters subjected to food restriction and refeeding, Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.4.262
    [4] Si-Si LAN, Qin ZHANG, Qin HUANG, Shui-Hua CHEN.  Breeding ecology of Chinese Bulbul in the urban environment of Hangzhou, China, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.3.0182
    [5] Ying LUO, Tai-Lin YU, Cheng-Ming HUANG, Tong ZHAO, Han-Hua LI, Chang-Jian LI.  Seasonal variations in the energy budget of Elliot’s pheasant (Syrmaticus ellioti) in cage, Zoological Research. doi: 10.3724/SP.J.1141.2013.E01E19
    [6] Zhi-Jun ZHAO, Wen-Tao WEI, Ming-Zhen LI, Jing CAO.  Body mass, energy budget and leptin of mice under stochastic food restriction and refeeding, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.6.0574
    [7] ZHENG Wei-Hong, FANG Yuan-Yuan, JIANG Xue-Hua, ZHANG Guo-Kai, LIU Jin-Song.  Comparison of Thermogenic Character of Liver and Muscle in Chinese Bulbul Pycnonotus sinensis Between Summer and Winter, Zoological Research. doi: 10.3724/SP.J.1141.2010.03319
    [8] ZHAO Zhi-jun, WANG Rui-rui, CAO Jing, PEI Lan-ying.  Effect of Random Food Deprivation and Refeeding on Energy Budget and Development in Mice, Zoological Research. doi: 10.3724/SP.J.1141.2009.05534
    [9] HU Bing, YANG Xiao-zhen, WU Xu-gan, TENG Wei-ming, CHENG Yong-xu.  Development of Gonad in Different Body Weights of Onchidium struma, Zoological Research. doi: 10.3724/SP.J.1141.2008.02145
    [10] HAN Yi-cai, JIANG Shi-ren, DING Ping.  Effects of Ambient Noise on the Vocal Frequency of Chinese Bulbuls,Pycnonotus sinensis in Lin'an and Fuyang City, Zoological Research.
    [11] WANG Xian-chun, LIANG Song-ping.  Renaturation and Mass Spectrometric Analysis of Chemically Synthesized ω-conotoxin MⅦA, Zoological Research.
    [12] XU Xue-Feng, CHEN Xue-Jun, JI Xiang.  Selected Body Temperature,Thermal Tolerance and Influence of Temperature on Food Assimilation and Locomotor Performance in Lacertid Lizards,Eremias brenchleyi, Zoological Research.
    [13] ZHANG Wu-Xian, WANG Zheng-Kun, NIAN Yong-Kun, XU Wei-Jiang, YAO Zheng.  The Effects of Cold Acclimation on Thermogenesis in Tree Shrews (Tupaia belangeri), Zoological Research.
    [14] WANG Yu-Shan, WANG De-Hua, WANG Zu-Wang.  The Progress on The Theory of Long-Term Energy Budget in Animals, Zoological Research.
    [15] NIU Cui-juan, ZHANG Ting-jun, SUN Ru-yong.  Aerial Respiration and Respiratory Gas Exchange Rate of Juvenile Soft-Shelled Turtle,Trionyx sinensis,Related to Temperature, Zoological Research.
    [16] LI Ren-de, CHEN Qiang, LIU Nai-fa.  Effects of Body Temperature on Electrocardiograms of Lizard Eremias multiocellata, Zoological Research.
    [17] ZOU En-min, DU Nan-shan, LAI Wei.  The Effects of Mass Temperature and Thermal Acclimation on The Respiration Rate of The Chinese Freshwater Crab Eriocheir sinensis (Crustacea:Decapod), Zoological Research.
    [18] ZHAO Yun-long, DU Nan-shan, LAI Wei.  Effects of Different Gradient Temperature on Embryonic Development of The Chinese Mitten-Handed Crab,Eriocheir sinensis (Crustacea,Decapod), Zoological Research.
    [19] PAN Ru-liang, PENG Yan-zhang, YE Zhi-zhang, WANG Hong.  Analysis of Tooth and Body Size Relationship in Phinopithecus, Zoological Research.
    [20] CHEN Xin, YANG Lan.  The Study of Fasting and Exhausting of Energy Materials Within Night of Pycnonotus xanthorrhous (Anderson's Bulbul), Zoological Research.
  • 加载中
计量
  • 文章访问数:  851
  • HTML全文浏览量:  43
  • PDF下载量:  1893
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-28
  • 修回日期:  2013-05-26
  • 刊出日期:  2014-01-08

目录

    /

    返回文章
    返回