留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A bird’s eye view of the algorithms and software packages for reconstructing phylogenetic trees

Li-Na ZHANG Chang-He RONG Yuan HE Qiong GUAN Bin HE Xing-Wen ZHU Jia-Ni LIU Hong-Ju CHEN

Li-Na ZHANG, Chang-He RONG, Yuan HE, Qiong GUAN, Bin HE, Xing-Wen ZHU, Jia-Ni LIU, Hong-Ju CHEN. A bird’s eye view of the algorithms and software packages for reconstructing phylogenetic trees. Zoological Research, 2013, 34(6): 640-650. doi: 10.11813/j.issn.0254-5853.2013.6.0640
Citation: Li-Na ZHANG, Chang-He RONG, Yuan HE, Qiong GUAN, Bin HE, Xing-Wen ZHU, Jia-Ni LIU, Hong-Ju CHEN. A bird’s eye view of the algorithms and software packages for reconstructing phylogenetic trees. Zoological Research, 2013, 34(6): 640-650. doi: 10.11813/j.issn.0254-5853.2013.6.0640

常用系统发育树构建算法和软件鸟瞰

doi: 10.11813/j.issn.0254-5853.2013.6.0640
基金项目: 遗传资源与进化国家重点实验室“开放课题”(项目名称:利用生存分析改进系统发育树和溯祖树构建的准确性和可靠性,项目编号:GREKF11-11)
详细信息
  • 中图分类号: Q332

A bird’s eye view of the algorithms and software packages for reconstructing phylogenetic trees

  • 摘要: 系统发育树又称进化树、生命树等,在达尔文的“进化论”一书中首次出现,之后系统发育树的重构被广大生物学家所接受。该文阐述了构建系统发育树的基本流程,对目前用于构建系统发育树的四类算法(距离法、最大简约法、最大似然法和贝叶斯法)进行了详细地分析和比较,并介绍了一些常用系统发育树构建和分析软件(PHYLIP、MEGA、MrBayes)的特点。
  • [1] Altschul SF, GISH W, Miller W, Myers EW, Ipman DJ. 1990. Basic local alignment search Tool. Journal of Molecular Biology, 215(3): 402-410.
    [2] Avise J. 2006. Evolutionary Pathways in Nature: A Phylogenetic Approach. New York: Cambridge University Press.
    [3] Bruno W J, Socd N D, Halpern AL. 2000. Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Molecular Biology and Evolution, 17(1): 189-197.
    [4] Bryant D, Galtier N, Poursat MA. 2005. Mathematics of Evolution and Phylogeny: Likelihood Calculation in Molecular Phylogeny. Oxford: Oxford University Press USA.
    [5] Camin J H, Sokal R R. 1965. A method for deducing branching sequences in phylogeny. Evolution, 19(3): 311-326.
    [6] Chen NT, Wang NC, Shi BC. 2006. Fast algorithm for constructing neighbor-joining phylogenetie trees. Journal of Southeast University, 22(2): 176-179.
    [7] Criscuolo A, Gascuel Q. 2008. Fast NJ-like algorithms to deal with incomplete distance matrices. BMC Bioinformatics, 9(1): 166-18.
    [8] Desper R, Gascuel Q. 2002. Fast and accurate phylogeny reconstruction algorithms based on the Minimum-Evolution principle. Journal of Computational Biology, 9(5): 687-705.
    [9] Dobzhansky T. 1973. Nothing in biology makes sense except in the light of evolution. The American Biology Teacher, 35: 125-129.
    [10] Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5): 1792-1797.
    [11] Even S, Even G. 2011. Graph Algorithms. New York: Cambridge University Press, 46-48.
    [12] Felsenstein J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27(4):401-410.
    [13] Felsenstein J. 1979. Alternative methods of phylogenetic inference and their interrelationship. Systematic Zoology, 28(1): 49-62.
    [14] Felsenstein J. 1981a. A likelihood approach to character weighting and what it tells us about parsimony and compatibility. Biological Journal of the Linnean Society, 16(3): 183-196.
    [15] Felsenstein J. 1981b. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17(6): 368-376.
    [16] Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4): 783-791.
    [17] Fitch W. 1971. Toward defining the course of evolution: Minimum change for a specified tree topology. Systematic Zoology, 20: 406-416.
    [18] Foulds LR, Graham RL. 1982. The steiner tree problem in phylogeny is NP-complete. Advances in Applied Mathematics, 3: 4-49.
    [19] Gascuel Q. 1997. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution, 14(7): 685-695.
    [20] Gregory TR. 2008. Understanding evolutionary trees. Evolution: Education and Outreach, 1(2): 121-137.
    [21] Hein J. 1990. Reconstructing evolution of sequences subject to recombination using parsimony. Mathematical Biosciences, 98(2): 185-200.
    [22] Hein J. 1993. A heuristic method to reconstruct the history of sequences subject to recombination. Journal of Molecular Evolution, 36(4): 396-405.
    [23] Holder M, Lewis PO. 2003. Phylogeny estimation: traditional and bayesian approaches. Nature, 4(4): 275-284.
    [24] Huelsenbeck JP, Ronquist F. 2001. MRBAYES: bayesian inference of phylogenetic trees. Bioinfrmatics, 17 (8):754-755.
    [25] Jukes TH, Cantor CR. 1969. Evolution of protein molecules. In: Mammalian Protein Metabolism. New York: Academic Press.
    [26] Kidd KK, Sgaramelh-Zonta LA. 1971. Phylogenetic Analysis: concepts and methods. The American Journal of Human Genetics, 23(3): 235-252.
    [27] Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2): 111-120.
    [28] Land AH, Doig AG. 1960. An automatic method of solving discrete programming problems. Econometrica, 28(3): 497-520.
    [29] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A,Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23(21): 2947-2948.
    [30] Lipman DJ, Pearson WR. 1985. Rapid and sensitive protein similarity searches. Science, 227(4693): 1435-1441.
    [31] Mount DW. 2008. Maximum parsimony method for phylogenetic prediction. Cold Spring Harbor Protocols, doi:  10.1101/pdb.top32.
    [32] Mucherino A, Seref O. 2009. Modeling and solving real-life global optimization problems with meta-heuristic methods. Advances in Modeling Agricultural Systems, 25: 403-419.
    [33] Myung IJ. 2003. Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology, 47(1): 90-100.
    [34] Penny D. 1982. Towards a basis for classification: the incompleteness of distance measures, incompatibility analysis and phenetic classification. Journal of Theoretical Biology, 96(2): 129-142.
    [35] Penny D, Hendy MD. 1985. The use of tree comparison metrics. Systematic Zoology, 34(1): 75-82.
    [36] Saitou N, Nei M. 1986. The number of nucleotides required to determine the branching order of three species, with special reference to the human-chimpanzee-gorilla divergence. Journal of Molecular Evolution, 24(1-2): 189-204.
    [37] Saitou N, Imanishi T. 1989. Relative efficiencies of the fitch-margoliash, maximum-parsimony, maximum-likelihood, minimum-evolution, and neighbor-joining methods of phylogenetic tree construction in obtaining the corrent tree. Molecular Biology and Evolution, 6(5): 514-525.
    [38] Sanmartín I, van der Mark P, Ronquist F. 2008. Inferring dispersal: a Bayesian approach to phylogeny-based island biogeography, with special reference to the Canary Islands. Journal of Biogeography, 35(3): 428-449.
    [39] Shao J, Tu DS. 1996. The Jackknife and Bootstrap. New York: Springer.
    [40] Studier JA, Keppler KJ. 1988. A note on the neighbor-joining algorithm of Saitou and Nei. Molecular Biology and Evolution, 5(6): 729-731.
    [41] Sober E. 1988. Reconstructing the Past: Parsimony Evolution and Inference. London: Cambridge MIT Press.
    [42] Takezaki N. 1998. Tie trees generated by distance methods of phylogenetic reconstruction. Molecular Biology and Evolution, 15(6): 727-737.
    [43] Taylor MP, Wedel MJ, Cifelli RL. 2011. A new sauropod dinosaur from the Lower Cretaceous Cedar Mountain Formation, Utah, USA. Acta Palaeontologica Polonica, 56(1): 75-98.
    [44] Wu CFJ. 1986. Jackknife, bootstrap and other resampling methods in regression analysis. The Annals of Statistics, 14(4): 1261-1295.
    [45] Yang ZH, Rannala B. 2012. Molecular phylogenetics: principles and practice. Nature Reviews Genetics, 13(5): 303-314.
    [46] Zhang SB, Lai JH. 2010. Bioinformatics approach for molecular evolution research. Computer Science, 37(8): 47-51. [张树波, 赖剑煌. 2010. 分子系统发育分析的生物信息学方法. 计算机科学, 37(8): 47-51.]
    [47] Zhong Y, Zhao L, Zhao Q. 2001. An Introduction to Bioinformatics. Beijing: Higher Education Press. [钟扬, 赵亮, 赵琼. 2001. 简明生物信息学. 北京: 高等教育出版社.]
  • [1] Chatmongkon Suwannapoom, Ya-Jiang Wu, Xing Chen, Adeniyi C. Adeola, Jing Chen, Wen-Zhi Wang.  Complete mitochondrial genome of the Thai Red Junglefowl (Gallus gallus) and phylogenetic analysis, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.028
    [2] Ian S. LOGAN.  ZIKA-How fast does this virus mutate?, Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.2.110
    [3] Yong-Gui MA, Yuan HUANG, Fu-Min LEI.  Sequencing and phylogenetic analysis of the Pyrgilauda ruficollis (Aves, Passeridae) complete mitochondrial genome, Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.2.081
    [4] Xiao-Juan LI, Qiong-Ying TANG, Huan-Zhang LIU.  Skeletal anatomy and phylogenetic position analysis of Gobiocypris rarus, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.4.0379
    [5] Ling XU, Yu FAN, Xue-Long JIANG, Yong-Gang YAO.  Molecular evidence on the phylogenetic position of tree shrews, Zoological Research. doi: 10.3724/SP.J.1141.2013.02070
    [6] LI Xin-Yi, LIN Yu-Shuang, ZHANG Hong-Wei.  Phylogenetic analysis and expression patterns of tropomyosin in amphioxus, Zoological Research. doi: 10.3724/SP.J.1141.2012.04389
    [7] SONG Rui, DONG Feng, LIU Lu-Ming, WU Fei, WANG Kai, ZOU Fa-Sheng, LEI Fu-Min, LI Shou.  Preliminary discussion on the phylogenetic and taxonomic relationship of Pomatorhinus ruficollis, Zoological Research. doi: 10.3724/SP.J.1141.2011.03241
    [8] ZHONG Hua-Ming, ZHANG Hong-Hai , *, SHA Wei-Lai, ZHANG Cheng-De, CHEN Yu-Cai.  Complete Mitochondrial Genome of the Red Fox (Vuples vuples) and Phylogenetic Analysis with Other Canid Species, Zoological Research. doi: 10.3724/SP.J.1141.2010.02122
    [9] YANG Jun-Xiao, ZHOU Wei-Wei, RAO Ding-Qi, POYARKOV A Nikolay, KUZMIN Sergius L.  Validity and Systematic Position of Rana altaica (Rana: Ranidae): Results of a Phylogenetic Analysis, Zoological Research. doi: 10.3724/SP.J.1141.2010.04353
    [10] LIANG Gang, LI Tao, YIN Zuo-hua, LEI Fu-min.  Molecular Phylogenetic Analysis of Some Fringillidae Species Based on Mitochondrial CoI Gene Sequences, Zoological Research. doi: 10.3724/SP.J.1141.200805465
    [11] YU Li, ZHANG Ya-ping , *Summary of Phylogeny in Mammalian Order Carnivora, Zoological Research.
    [12] WEN Long-ying, ZHANG Li-xun, LIU Nai-fa.  Phylogenetic Relationship of Perdix dauuricae Inferred from Mitochondrial Cytochrome b Gene, Zoological Research.
    [13] WANG Yi-quan, FANG Shao-hua.  Taxonomic and Molecular Phylogenetic Studies of Amphioxus: A Review and Prospective Evaluation, Zoological Research.
    [14] FU Cheng-jie, MIAO Wei, SHEN Yun-fen, WAN Ming-liang.  Phylogenetic Analysis of Peritrichs Inferred from Cytosolic Hsp70 Gene Partial Sequences, Zoological Research.
    [15] ZHANG Liang, ZOU Fang-dong, CHEN San, ZHAO Er-mi, YUE Bi-song.  Cloning of SRY Gene from Moschus berezovskii and M.chrysogaster and Its Application in Phylogenetic Analysis, Zoological Research.
    [16] LIU Xiang-hua, WANG Yi-quan, LIU Zhong-quan, Zhou Kai-ya.  Phylogenetic Relationships of Cervinae Based on Sequence of Mitochondrial Cytochrome b Gene, Zoological Research.
    [17] SHI Yan-feng, SHAN Xiang-nian, LI Jian, ZHANG Hai-jun, ZHENG Ai-ling.  Phylogenetic Relationships of Seven Cetartiodactyla Species Inferred from Mitochondrial Genome, Zoological Research.
    [18] SUN Hong-ying, ZHOU Kai-ya, SONG Da-xiang.  Mitochondrial Genome and Phylogenetic Reconstruction of Arthropods, Zoological Research.
    [19] MIAO Wei, ZHANG Xi-yuan, YU Yu-he, SHEN Yun-fen.  Phylogenetic Position of Peritrichs Based on Tree Kinds of Molecular Markers, Zoological Research.
    [20] WANG Yu-Shan, WANG Zu-Wang, WANG De-Hua.  Effects of Temperature and Photoperiod on Maximum Metabolic Rates in Plateau Pikas and Root Voles, Zoological Research.
  • 加载中
计量
  • 文章访问数:  1534
  • HTML全文浏览量:  31
  • PDF下载量:  3544
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-16
  • 修回日期:  2013-11-07
  • 刊出日期:  2013-12-08

A bird’s eye view of the algorithms and software packages for reconstructing phylogenetic trees

doi: 10.11813/j.issn.0254-5853.2013.6.0640
    基金项目:  遗传资源与进化国家重点实验室“开放课题”(项目名称:利用生存分析改进系统发育树和溯祖树构建的准确性和可靠性,项目编号:GREKF11-11)
  • 中图分类号: Q332

摘要: 系统发育树又称进化树、生命树等,在达尔文的“进化论”一书中首次出现,之后系统发育树的重构被广大生物学家所接受。该文阐述了构建系统发育树的基本流程,对目前用于构建系统发育树的四类算法(距离法、最大简约法、最大似然法和贝叶斯法)进行了详细地分析和比较,并介绍了一些常用系统发育树构建和分析软件(PHYLIP、MEGA、MrBayes)的特点。

English Abstract

张丽娜, 荣昌鹤, 何远, 关琼, 何彬, 朱兴文, 刘佳妮, 陈红菊. 常用系统发育树构建算法和软件鸟瞰[J]. 动物学研究, 2013, 34(6): 640-650. doi: 10.11813/j.issn.0254-5853.2013.6.0640
引用本文: 张丽娜, 荣昌鹤, 何远, 关琼, 何彬, 朱兴文, 刘佳妮, 陈红菊. 常用系统发育树构建算法和软件鸟瞰[J]. 动物学研究, 2013, 34(6): 640-650. doi: 10.11813/j.issn.0254-5853.2013.6.0640
Li-Na ZHANG, Chang-He RONG, Yuan HE, Qiong GUAN, Bin HE, Xing-Wen ZHU, Jia-Ni LIU, Hong-Ju CHEN. A bird’s eye view of the algorithms and software packages for reconstructing phylogenetic trees. Zoological Research, 2013, 34(6): 640-650. doi: 10.11813/j.issn.0254-5853.2013.6.0640
Citation: Li-Na ZHANG, Chang-He RONG, Yuan HE, Qiong GUAN, Bin HE, Xing-Wen ZHU, Jia-Ni LIU, Hong-Ju CHEN. A bird’s eye view of the algorithms and software packages for reconstructing phylogenetic trees. Zoological Research, 2013, 34(6): 640-650. doi: 10.11813/j.issn.0254-5853.2013.6.0640
参考文献 (47)

目录

    /

    返回文章
    返回