留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Using spectra and visual modeling to study animal coloration

Can-Chao YANG Wei LIANG

Can-Chao YANG, Wei LIANG. Using spectra and visual modeling to study animal coloration. Zoological Research, 2013, 34(6): 564-573. doi: 10.11813/j.issn.0254-5853.2013.6.0564
Citation: Can-Chao YANG, Wei LIANG. Using spectra and visual modeling to study animal coloration. Zoological Research, 2013, 34(6): 564-573. doi: 10.11813/j.issn.0254-5853.2013.6.0564

通过光谱与视觉模型研究动物体色

doi: 10.11813/j.issn.0254-5853.2013.6.0564
基金项目: 国家自然科学基金(31071938,31260514,31272328);教育部科学技术研究重点项目(212136);海南省创新引进集成专项科技合作项目(KJHZ2013-12)
详细信息
  • 中图分类号: Q958.1

Using spectra and visual modeling to study animal coloration

  • 摘要: 体色是动物进行种内和种间信息交流的重要性状特征。与人类的三基色视觉系统不同,许多动物都具有四面体颜色系统,包括人眼无法探测的紫外光区域。动物体色是动物生态学中的一项重要研究内容,以人类主观角度对动物体色进行描述和分类,可能会导致研究结果的偏差,甚至得出错误结论。该文以赤红山椒鸟(Pericrocotus flammeus)为实例,通过分段光谱分析,对动物体色的色调、色度、亮度以及各波段的亮度进行量化;通过构建先进的动物视觉模型以考虑环境光线的影响和动物视网膜对不同波段光线的敏感度和捕获能力,同时将颜色斑块直观投射在四面体颜色空间和罗宾逊投影中,以量化颜色跨度和空间容量等参数,真正实现从动物的视觉角度分析动物体色。
  • [1] Alonso-Alvarez C, Bertrand S, Devevey G, Gaillard M, Prost J, Faivre B, Sorci G. 2004. An experimental test of the dose-dependent effect of
    [2] carotenoids and immune activation on sexual signals and antioxidant activity. The American Naturalist, 164(5): 651-659.
    [3] Andersson MB. 1994. Sexual Selection. Princeton: Princeton Uni. Press.
    [4] Archer SN, Lythgoe JN. 1990. The visual pigment basis of cone polymorphism in the guppy, Poecilia reticulata. Vision Research, 30: 225-233.
    [5] Autrum H, Jung R, Loewenstein WR, MacKay DM, Teuber HL. 1981. Handbook of Sensory Physiology. New York: Springer-Verlang.
    [6] Baylor DA, Fettiplace R. 1975. Light path and photon capture in turtle photoreceptors. Journal of Physiology, 248: 433-464.
    [7] Bennett ATD, Cuthill IC. 1994. Ultraviolet vision in birds: what is its function? Vision Research, 34(11): 1471-1478.
    [8] Bennett ATD, Cuthill IC, Partridge JC, Lunau K. 1997. Ultraviolet plumage colors predict mate preferences in starlings. Proceedings of the National Academy of Sciences of the United States of America, 94(16): 8618-8621.
    [9] Blough DS. 1957. Spectral sensitivity in the pigeon. Journal of the Optical Society of America A, 47(9): 827-833.
    [10] Bowmaker JK. 1998. Evolution of colour vision in vertebrates. Eye, 12(3B): 541-547.
    [11] Bowmaker JK, Thorpe A, Douglas RH. 1991. Ultraviolet-sensitive cones in the goldfish. Vision Research, 31(3): 349-352.
    [12] Burton GW. 1989. Antioxidant action of carotenoids. The Journal of Nutrition, 119(1): 109-111.
    [13] Cuthill IC, Partridge JC, Bennett ATD, Church SC, Hart NS, Hunt S. 2000. Ultraviolet vision in birds. Advances in the Study of Behavior, 29: 159-214.
    [14] Darst CR, Cummings ME, Cannatella DC. 2006. A mechanism for diversity in warning signals: Conspicuousness versus toxicity in poison frogs. Proceedings of the National Academy of Sciences of the United States of America, 103(15): 5852-5857.
    [15] Darwin C. 1871. The Descent of Man and Selection in Relation to Sex. London: John Murray.
    [16] Endler JA. 1990. On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41(4): 315-352.
    [17] Endler JA, Mielke PW. 2005. Comparing entire colour patterns as birds see them. Biological Journal of the Linnean Society, 86(4): 405-431.
    [18] Fleishman LJ, Loew ER, Leal M. 1993. Ultraviolet vision in lizards. Nature, 365(6445): 397.
    [19] Goldsmith TH. 1990. Optimization, constraint, and history in the evolution of eyes. The Quarterly Review of Biology, 65(3): 281-322.
    [20] Goldstein G, Flory KR, Browne BA, Majid S, Ichida JM, Burtt EH. 2004. Bacterial degradation of black and white feathers. The Auk, 121(3): 656-659.
    [21] Govardovskii VI, Fythrquist N, Reuter T, Kuzmin DG, Donner K. 2000. In search of the visual pigment template. Visual Neuroscience, 17(4): 509-528.
    [22] Hart NS, Partridge JC, Cuthill IC. 1998. Visual pigments, oil droplets and cone photoreceptor distribution in the European starling (Sturnus vulgaris). The Journal of Experimental Biology, 201(9): 1433-1446.
    [23] Hill GE, McGraw KJ. 2006. Bird Coloration: Function and Evolution. Cambridge: Harvard University Press.
    [24] Hoekstra HE. 2006. Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity, 97(3): 222-234.
    [25] Honkavaara J, Aberg H, Viitala J. 2008. Do house mice use UV cues when foraging? Journal of Ethology, 26(3): 339-345.
    [26] Honkavaara J, Koivula M, Korpimäki E, Siitari H, Viitala J. 2002. Ultraviolet vision and foraging in terrestrial vertebrates. Oikos, 98(3): 505-511.
    [27] Hunt S, Bennett ATD, Cuthill IC, Griffiths R. 1998. Blue tits are ultraviolet tits. Proceedings of the Royal Society B: Biological Sciences, 265(1395): 451-455.
    [28] Jacobs GH. 1992. Ultraviolet vision in vertebrates. American Zoologist, 32(4): 544-554.
    [29] Jacobs GH, Deegan JF II. 1994. Sensitivity to ultraviolet light in the gerbil (Meriones unguiculatus): characteristics and mechanisms. Vision Research, 34(11): 1433-1411.
    [30] Jawor JM, Breitwisch R. 2003. Melanin ornaments, honesty, and sexual selection. The Auk, 120(2): 249-265.
    [31] Kilner RM. 2006. The evolution of egg colour and patterning in birds. Biological Reviews, 81(3): 383-406.
    [32] Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K. 2008. Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proceedings of the Roy Society B: Biological Sciences, 275(1637): 947-954.
    [33] Linnen CR, Kingsley EP, Jensen JD, Hoekstra HE. 2009. On the origin and spread of an adaptive allele in deer mice. Science, 325(5944): 1095-1098.
    [34] Lyytinen A, Brakefield PM, Mappes J. 2003. Significance of butterfly eyespots as an anti-predator device in ground-based and aerial attacks. Oikos, 100(2): 373-379.
    [35] Mac韆s-S醤chez E, Mart韓ez JG, Avilés JM, Soler M. 2013. Sexual differences in colour and size in the great spotted cuckoo Clamator glandarius. Ibis, 155(3): 605-610, doi: 10.1111/ibi.12045.
    [36] MacKinnon J, Phillipps K. 1999. A Field Guide to the Birds of China. Oxford: Oxford University Press.
    [37] Mahler B, Kempenaers B. 2002. Objective assessment of sexual plumage dichromatism in the Picui dove. Condor, 104(2): 248-254.
    [38] Mays HL Jr, McGram KJ, Ritchision G, Cooper S, Rush V, Parker RS. 2004. Sexual dichromatism in the yellow-breasted chat Icteria virens: spectrophotometric analysis and biochemical basis. Journal of Arian Biology, 35(2): 125-134.
    [39] McFarland WN, Loew ER. 1994. Ultraviolet visual pigments in marine fishes of the family pomacentridae. Vision Research, 34(11): 1393-1396.
    [40] Mohr CO. 1947. Table of equivalent populations of North American small mammals. American Midland Naturalist, 37(1): 223-249.
    [41] Nachman MW, Hoekstra HE, D'Agostino SL. 2003. The genetic basis of adaptive melanism in pocket mice. Proceedings of the National Academy of Sciences of the United States of America, 100(9): 5268-5273.
    [42] Perry RJ, McNaughton PA. 1991. Response properties of cones from the retina of the tigar salamander. The Journal of Physiology, 433: 561-587.
    [43] Peters A. 2007. Testosterone and carotenoids: An integrated view of trade-offs between immunity and sexual signalling. BioEssays, 29(5): 427-430.
    [44] Protas ME, Patel NH. 2008. Evolution of coloration patterns. Annual Review of Cell and Developmental Biology, 24(1): 425-446.
    [45] Robinson J, Schmitt EA, H醨osi FI, Reece RJ, Dowling JE. 1993. Zebrafish ultraviolet visual pigment: Absorption spectrum, sequence, and localization. Proceedings of the National Academy of Sciences of the United States of America, 90(13): 6009-6012.
    [46] Rosenblum EB, Hoekstra HE, Nachman MW. 2004. Adaptive reptile color variation and the evolution of the Mc1r gene. Evolution, 58(8): 1794-1808.
    [47] Safran RJ, McGraw KJ. 2004. Plumage coloration, not length or symmetry of tail-streamers, is a sexually selected trait in North American barn swallows. Behavioral Ecology, 15(3): 455-461.
    [48] Slagsvold T, Dale S, Kruszewicz A. 1995. Predation favours cryptic coloration in breeding male pied flycatchers. Animal Behaviour, 50(4): 1109-1121.
    [49] Spottiswoode CN, Stevens M. 2010. Visual modeling shows that avian host parents use multiple visual cues in rejecting parasitic eggs. Proceedings of the National Academy of Sciences of the United States of America, 107(19): 8672-8676.
    [50] Steiner CC, Römpler H, Boettger LM, Schöneberg T, Hoekstra HE. 2009. The genetic basis of phenotypic convergence in beach mice: similar pigment patterns but different genes. Molecular Biology and Evolution, 26(1): 35-45.
    [51] Tovée MJ. 1995. Ultra-violet photoreceptors in the animal kingdom: their distribution and function. Trends in Ecology and Evolution, 10(11): 455-460.
    [52] Ventura DF, Souza De JM, Devoe RD, Zana Y. 1999. UV responses in the retina of the turtle. Visual Neuroscience, 16(2): 191-204.
    [53] Villafuerte R, Negro JJ. 1998. Digital imaging for colour measurement in ecological research. Ecology Letters, 1(3): 151-154.
    [54] Yang C, Cai Y, Liang W. 2010a. Brood parasitism and egg mimicry on brownish-flanked bush warbler (Cettia fortipes) by lesser cuckoo (Cuculus poliocephalus). Zoological Research, 31(5): 555-560.
    [55] Yang C, Cai Y, Liang W. 2011. Visual modeling reveals cryptic aspect in egg mimicry of Himalayan cuckoo (Cuculus saturatus) on its host Blyth's leaf warbler (Phylloscopus reguloides). Zoological Research, 32(4): 451-455.
    [56] Yang C, Antonov A, Cai Y, Stokke BG, Moksnes A, Røskaft E, Liang W. 2012. Large hawk-cuckoo Hierococcyx sparverioides parasitism on the Chinese babax Babax lanceolatus may be an evolutionarily recent host-parasite system. Ibis, 154(1): 200-204.
    [57] Yang C, Wang L, Hsu Y-C, Antonov A, Moksnes A, Røskaft E, Liang W, Stokke BG. 2013. UV reflectance as a cue in egg discrimination in two Prinia species exploited differently by brood parasites in Taiwan. Ibis, 155(3): 571-575. Yang C, Liang W, Cai Y, Shi S, Takasu F, Møller AP, Antonov A, Fossøy F, Moksnes A, Røskaft E, Stokke BG. 2010b. Coevolution in action: Disruptive selection on egg colour in an avian brood parasite and its host. PLoS ONE, 5(5): e10816. doi: 10.1371/journal.pone.0010816.
  • [1] De-Feng Bai, Peng-Ju Chen, Luciano Atzeni, Lhaba Cering, Qian Li, Kun Shi.  Assessment of habitat suitability of the snow leopard (Panthera uncia) in Qomolangma National Nature Reserve based on MaxEnt modeling, Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.057
    [2] Ming LI, Shinn-Yi CHOU.  Modeling postpartum depression in rats: theoretic and methodological issues, Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.4.229
    [3] Ji-Chao WANG, Can-Chao YANG, Wei LIANG, Hai-Tao SHI.  Spectra analysis reveals the sexual dichromatism of red-eared slider turtle(Trachemys scripta), Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.5.0475
    [4] ZHANG Hui, MENG Jian-Jun, WANG Ke, LIU Rui-Long, XI Min-Min, HUA Tian-Miao.  Acute lesions of primary visual cortical areas in adult cats inactivate responses of neurons in higher visual cortices, Zoological Research. doi: 10.3724/SP.J.1141.2012.02218
    [5] ZHOU Jun, SHI Xia-Ming, PENG Qing-Song, HUA Guo-Peng, HUA Tian-Miao.  Decreased contrast sensitivity of visual cortical cells to visual stimuli accompanies a reduction of intracortical inhibition in old cats, Zoological Research. doi: 10.3724/SP.J.1141.2011.05533
    [6] GONG Peng-Bo, LIU Quan-Sheng, FENG Zhi-Yong, QIN Jiao, CHEN Qin, YAO Dan-Dan, HUAN.  Effects of high-fiber diet on timing of behaviors in Bandicota indica, Zoological Research. doi: 10.3724/SP.J.1141.2011.02236
    [7] YANG Can-Chao, CAI Yan, LIANG Wei.  Visual modeling reveals cryptic aspect in egg mimicry of Himalayan Cuckoo (Cuculus saturatus) on its host Blyth’s Leaf Warbler (Phylloscopus reguloides), Zoological Research. doi: 10.3724/SP.J.1141.2011.04451
    [8] XIE Yu-wei, XUE Xiao-ping, YIN Huan-cai, TANG Rui-hua, SU Jing, SONG Kai, HUYAN Ting, WANG Hua, YANG Hui.  Homology Modeling and Molecular Evolution Analysis of Myostatin, Zoological Research. doi: 10.3724/SP.J.1141.200805485
    [9] TAN Hua, MENG Zhi-qiang, LIU Ning, MA Yuan-ye, Fraser A.W. Wilson , *A Training Program for Visual Discrimination Tasks in Monkeys, Zoological Research.
    [10] ZHOU Dao-lei, ZHAO Ya-jun*, LI Bao-ming*, SHI Zheng-xiang.  Effect of Transport Space Allowance on Piglets' Behaviour and Performance, Zoological Research.
    [11] CHEN Guo-Jun, A.Townsend Peterson.  A New Technique For Predicting Distribution of Terrestrial Vertebrates Using Inferential Modeling, Zoological Research.
    [12] HUANG Yao-de, HONG Xiu-hua, HE Yu-hong, KANG Chao-sheng, CAI Jing-xia, WANG Jian-hong.  Substance P-Like Immunoreactive Neurons in The Cholinergic Cortical Projection Neuron Areas of The Basal Forebrain in The Cat, Zoological Research.
    [13] ZHU Dao-li.  A Study on The Architecture and Fiber Types of The Gastrocnemius Muscle in Rabbit, Zoological Research.
    [14] ZHANG Xin-wen, CHEN Yan, CHANG Yan-chun, YANG Xiu-hong, SU Gui-ping.  Fiber Connections and Functions of The Hyperstriatum Ventrale Pars Caudale in Fringilla montifringilla, Zoological Research.
    [15] HENG Hong-qiang, CHEN Wen-yuan, WANG Zi-shu, WANG Xi-zhong, ZHAN Xi-ling.  Studies on the unit Fiber Structure of the Chromosome of the Bufo bufo gargarizans, Zoological Research.
    [16] JIANG Lian-hai, JIANG Zhi-hua, SHEN E.  Observations on Fiber Cotent of the Nerve Innervating Submandibular Gland and its Preganglionic Neurons in the Brainstem of the cat, Zoological Research.
    [17] DONG Xin-wen.  Organization of the nucleus Raphe Dorsalis and its Projection to the Caudatoputamen Complex, Zoological Research.
    [18] 广西医学院.  Color Variation of Lycodon Subcinctus, Zoological Research.
    [19] Mashouxiang, zhongjinyan.  Recovery effect of ultraviolet light on the cell menbrane damage of rat erythrocytes induced by gamma-radiation, Zoological Research.
    [20] XUE Kai-xian.  Studies on Nucleocytoplasmic Relalonship in Ultraviolet Radiation-induced Damage and Recovery From the Damage in Amoeba discoides, Zoological Research.
  • 加载中
计量
  • 文章访问数:  1062
  • HTML全文浏览量:  27
  • PDF下载量:  1848
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-07
  • 修回日期:  2013-08-26
  • 刊出日期:  2013-12-08

Using spectra and visual modeling to study animal coloration

doi: 10.11813/j.issn.0254-5853.2013.6.0564
    基金项目:  国家自然科学基金(31071938,31260514,31272328);教育部科学技术研究重点项目(212136);海南省创新引进集成专项科技合作项目(KJHZ2013-12)
  • 中图分类号: Q958.1

摘要: 体色是动物进行种内和种间信息交流的重要性状特征。与人类的三基色视觉系统不同,许多动物都具有四面体颜色系统,包括人眼无法探测的紫外光区域。动物体色是动物生态学中的一项重要研究内容,以人类主观角度对动物体色进行描述和分类,可能会导致研究结果的偏差,甚至得出错误结论。该文以赤红山椒鸟(Pericrocotus flammeus)为实例,通过分段光谱分析,对动物体色的色调、色度、亮度以及各波段的亮度进行量化;通过构建先进的动物视觉模型以考虑环境光线的影响和动物视网膜对不同波段光线的敏感度和捕获能力,同时将颜色斑块直观投射在四面体颜色空间和罗宾逊投影中,以量化颜色跨度和空间容量等参数,真正实现从动物的视觉角度分析动物体色。

English Abstract

杨灿朝, 梁伟. 通过光谱与视觉模型研究动物体色[J]. 动物学研究, 2013, 34(6): 564-573. doi: 10.11813/j.issn.0254-5853.2013.6.0564
引用本文: 杨灿朝, 梁伟. 通过光谱与视觉模型研究动物体色[J]. 动物学研究, 2013, 34(6): 564-573. doi: 10.11813/j.issn.0254-5853.2013.6.0564
Can-Chao YANG, Wei LIANG. Using spectra and visual modeling to study animal coloration. Zoological Research, 2013, 34(6): 564-573. doi: 10.11813/j.issn.0254-5853.2013.6.0564
Citation: Can-Chao YANG, Wei LIANG. Using spectra and visual modeling to study animal coloration. Zoological Research, 2013, 34(6): 564-573. doi: 10.11813/j.issn.0254-5853.2013.6.0564
参考文献 (57)

目录

    /

    返回文章
    返回