留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sequencing and analysis of the complete mitochondrial genome of Remiz consobrinus

Rui-Rui GAO Yuan HUANG Fu-Min LEI

Rui-Rui GAO, Yuan HUANG, Fu-Min LEI. Sequencing and analysis of the complete mitochondrial genome of Remiz consobrinus. Zoological Research, 2013, 34(3): 228-237. doi: 10.11813/j.issn.0254-5853.2013.3.0228
Citation: Rui-Rui GAO, Yuan HUANG, Fu-Min LEI. Sequencing and analysis of the complete mitochondrial genome of Remiz consobrinus. Zoological Research, 2013, 34(3): 228-237. doi: 10.11813/j.issn.0254-5853.2013.3.0228

中华攀雀线粒体基因组全序列测定与分析

doi: 10.11813/j.issn.0254-5853.2013.3.0228
基金项目: 国家杰出青年科学基金 (30925008);中国科学院动物进化与系统学重点实验室开放课题 (O529YX5105)
201303228-Supporting info-附录
详细信息
  • 中图分类号: Q959.7+39; Q52

Sequencing and analysis of the complete mitochondrial genome of Remiz consobrinus

  • 摘要: 该研究使用长PCR扩增和引物步移法测定了中华攀雀 (Remiz consobrinus) 线粒体基因组全序列,在对序列进行拼接和注释的基础上,分析了其结构、序列组成及蛋白编码基因密码子使用情况等,并对22个tRNA和2个rRNA的二级结构以及控制区结构进行了预测及系统发育分析,为雀形目鸟类的系统发育研究提供了新信息。中华攀雀线粒体基因组全长16 737 bp,GenBank登录号 KC463856,碱基A、T、C、G的含量分别为27.8%、21.5%、35.4%及15.3%, 37个基因排列顺序与已报道的其他鸟类基本一致,包含13个蛋白编码基因、22个tRNA基因、2个rRNA基因及1个非编码的控制区 (D-loop),有18对基因间共存在77 bp的间隔,7对基因间共存在30 bp的重叠。除ND3基因的起始密码子为ATT外,其余均为标准的ATG,11个蛋白编码基因的终止密码子为TAA、TAG、AGA或AGG,2个为不完全终止密码子T (COⅢ、ND4)。除tRNASer-AGN DHU臂缺失外,其余21个tRNA均可形成典型的三叶草结构,在出现的27处碱基错配中有19处为常见的G-U错配。SrRNA和LrRNA二级结构分别包含3个结构域47个茎环结构和6个结构域60个茎环结构,与所发表的其他鸟类rRNA二级结构大体一致。中华攀雀控制区发现了同样存在于其他鸟类控制区的保守框F-box、D-box、C-box、B-box、Bird similarity-box和CSB1-box。该研究支持将攀雀科作为独立的科,同时,支持莺总科与攀雀科的单系性。
  • [1] Abbott CL, Double MC, Trueman JWH, Robinson A, Cockburn A. 2005. An unusual source of apparent mitochondrial heteroplasmy: Duplicate mitochondrial control regions in Thalassarche albatrosses. Molecular Ecology, 14(11): 3605-3613.
    [2] Alström, P, EricsonPGP, Olsson U, Sundberg P. 2006. Phylogeny and classification of the avian Superfamily Sylvioidea. Mol Phylogenet Evol, 38:381-397.
    [3] Amaiz-Villena A, Guillen J, Ruiz-del-Valle V, Lowy E, Zamora J, Varela P, Stefani D, Allende LM. 2001. Phylogeography of crossbills, bullfinches, grosbeaks, and rosefinches. Cell and Molecular Life Sciences, 58(8): 1159-1166.
    [4] Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG. 1981. Sequence and organization of the human mitochondrial genome. Nature, 290(5806): 457-465.
    [5] Avise JC, Ankney CD, Nelson WS. 1990. Mitochondrial gene trees and the evolutionary relationship of mallard and black ducks. Evolution, 44(4): 1109-1119.
    [6] Baker AJ, Marshall HD. 1997. Mitochondrial control region sequences as tools for understanding evolution. In: Mindell DP. Avian Molecular Evolution and Systematics. San Diego: Academic Press, 51-82.
    [7] Bensch S, Härlid A. 2000. Mitochondrial genomic rearrangements in songbirds. Molecular Biology and Evolution, 17(1): 107-113.
    [8] Bonfield JK, Smith KF, Staden R. 1995. A new DNA sequence assembly program. Nucleic Acids Research, 23(24): 4992-4999.
    [9] Boore JL. 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27(8): 1767-1780.
    [10] Burk A, Douzery EJP, Springer MS. 2002. The secondary structure of mammalian mitochondrial 16S rRNA molecules: refinements based on a comparative phylogenetic approach. Journal of Mammalian Evolution, 9(3): 225-252.
    [11] Cui ZX, Liu Y, Li CP, You F, Chu KH. 2009. The complete mitochondrial genome of the large yellow croaker, Larimichthys crocea (Perciformes, Sciaenidae): unusual features of its control region and the phylogenetic position of the Sciaenidae. Gene, 432(1-2): 33-43.
    [12] Dang JP, Liu N, Ye W, Huang Y. 2008. Complete mitochondrial genome sequence of Gastrimargus marmoratus (Thunberg) (Orthoptera: Acridoidea). Acta Entomologica Sinica, 51(7): 671-680. [党江鹏, 刘念, 叶伟, 黄原. 2008. 云斑车蝗线粒体基因组全序列测定与分析. 昆虫学报, 51(7): 671-680.]
    [13] Dai CY, Chen K, Zhang RY, Yang XJ, Yin ZH, Tian HJ, Zhang ZM, Hu Y, Lei FM. 2010. Molecular phylogenetic analysis among species of Paridae, Remizidae and Aegithalos based on mtDNA sequences of COI and cyt b. Chinese Birds, 1(2): 112-123.
    [14] de los Monteros AE. 2003. Models of the primary and secondary structure for the 12S rRNA of birds: A guideline for sequence alignment. DNA Sequencing, 14(4): 241-256.
    [15] Desjardins P, Morais R. 1990. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. Journal of Molecular Biology, 212(4): 599-634.
    [16] Desjardins P, Morais R. 1991. Nucleotide sequence and evolution of coding and noncoding regions of a quail mitochondrial genome. Molecular Evolution, 32(2): 153-161.
    [17] Dirheimer G, Keith G, Dumas F, Westhof E. 1995. Primary, secondary and tertiary structures of tRNAs. In: Hill WE, Dahlbert A, Garrett RA, Moore PB, Schlessinger D, Warner JR. tRNA: Structure, Biosynthesis and Function. Washington DC: American Society for Microbiology Press, 93-126.
    [18] Doda JN, Wright CT, Clayton DA. 1981. Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proceedings of the National Academy of Sciences of the United States of America, 78(10): 6116-6120.
    [19] Eberhard JR, Wright TF, Bermingham E. 2001. Duplication and concerted evolution of the mitochondrial control region in the parrot genus Amazona. Molecular Biology and Evolution, 18(7): 1330-1342.
    [20] Foran DR, Hixson JE, Brown WM. 1988. Comparison of ape and human sequences that regulate mitochondrial DNA transcription and D-loop DNA synthesis. Nucleic Acids Research, 16(13), 5841-5861.
    [21] Gibb GC, Kardailsky O, Kimball RT, Braun EL, Penny D. 2007. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Molecular Biology and Evolution, 24(1): 269-280.
    [22] Haddrath O, Baker AJ. 2001. Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proceedings of the Royal Society B: Biological Sciences, 268(1470): 939-945.
    [23] Hanada T, Suzuki T, Watanabe K. 2000. Translation activity of mitochondrial tRNA with unusual secondary structure. Nucleic Acids Symposium Series, (44): 249-250.
    [24] Hickson RE, Simon C, Cooper A, Spicer GS, Sullivan J, Penny D. 1996. Conserved sequence motifs, alignment and secondary structure for the third domain of animal 12S rRNA. Molecular Biology and Evolution, 13(1): 150-169.
    [25] Ke Y, Huang Y, Lei FM. 2010. Sequencing and analysis of the complete mitochondrial genome of Podoces hendersoni. Hereditas, 32(9): 951-960. [柯杨, 黄原, 雷富民. 2010. 黑尾地鸦线粒体基因组序列测定与分析. 遗传, 32(9): 951-960.]
    [26] Kornegay JR, Kocher TD, Williams LA, Wilson AC. 1993. Pathways of lysozyme Evolution inferred from the sequences of cytochrome b in birds. Journal of Molecular Evolution, 37(4): 367-379.
    [27] Larsen N. 1992. Higher order interactions in 23S rRNA. Proceedings of the National Academy of Sciences of the United States of America, 89(11): 5044-5048.
    [28] Levinson G, Gutman GA. 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Molecular Biology and Evolution, 4(3): 203-221.
    [29] Li QW, Ma F. 2007. Birds Molecular Evolution and Molecular Systematics. Beijing: Science Press. [李庆伟, 马飞. 2007. 鸟类分子进化与分子系统学. 北京: 科学出版社.]
    [30] Lovette IJ, Bermingham E. 1999. Explosive speciation in the New World Dendroica warblers. Proceedings of the Royal Society B: Biological Sciences, 266(1429): 1629-1636.
    [31] Lowe TM, Eddy SR. 1997. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25(5): 955-964.
    [32] Marshall HD, Baker AJ. 1997. Structural variation and conservation in the mitochondrial control region of fringilline finches (Fringilla spp.) and the greenfinch (Carduelis chloris). Molecular Biology and Evolution, 14(2): 173-184.
    [33] Mindell D P, Sorenson M D, Dimcheff D E. 1998. Multiple independent origins of mitochondrial gene order in birds. Proceedings of the National Academy of Sciences of the United States of America, 95(18): 10693-10697.
    [34] Moritz C, Brown WM. 1986. Tandem duplication of D-loop and ribosomal RNA sequences in lizard mitochondrial DNA. Science, 233(4771): 1425-1427.
    [35] Mueller RL, Boore JL. 2005. Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. Molecular Biology and Evolution, 22(10): 2104-2122.
    [36] Neefs JM, Van de Peer Y, De Rijk P, Goris A, De Wachter R. 1993. Compilation of small ribosomal subunit RNA sequence. Nucleic Acids Research, 18(S1): 2237-2317.
    [37] Noller HF. 1984. Structure of ribosomal RNA. Annual Review of Biochemistry, 53(253): 119-162.
    [38] Ojala D, Montoya J, Attardi G. 1981. tRNA punctuation model of RNA processing in human mitochondria. Nature, 290(5806): 470-474.
    [39] Pakert M, Martens J, Sun YH. 2010. Phylogeny of long-tailed tits and allies inferred from mitochondrial and nuclear markers (Aves: Passeriformes, Aegithalidae). Molecular Phylogenetics and Evolution, 55(3): 952-967.
    [40] Quinn MTW. 1997. Molecular Evolution of the Mitochondrial Genome. In: Mindell DP. Avian Molecular Evolution and Systematics. SanDiego: Academic Press, 5: 3-28.
    [41] Quinn TW, Wilson AC. 1993. Sequence evolution in and around the mitochondrial control region in birds. Journal of Molecular Evolution, 39(4): 417-425.
    [42] Ramirez V, Savoiel P, Morais R. 1993. Molecular characterization and evolution of a duck mitochondrial genome. Journal of Molecular Evolution, 37(3): 296-310.
    [43] Randi E, Lucchini V. 1998. Organization and evolution of the mitochondrial DNA control region in the avian genus Alectoris. Journal of Molecular Evolution, 47(4): 449-462.
    [44] Ruokonen M, Kvist L. 2002. Structure and evolution of the avian mitochondrial control region. Molecular Phylogenetics and Evolution, 23(3): 422-432.
    [45] Sbisa E, Tanzariello F, Reyes A, Pesole G, Saccone C. 1997. Mammalian mitochondrial D-loop region structural analysis: Identification of new conserved sequences and their functional and evolutionary implications. Gene, 205(1-2): 125-140.
    [46] Sheldon FH, Gill FB. 1996. A reconsideration of songbird Phylogeny, with emphasis on the evolution of titmice their sylvioid relatives. Systems Biology, 45(4): 473-495.
    [47] Sibley CG, Ahlquist JA. 1990. The Phylogeny and Classification of Birds: A Study in Molecular Evolution. New Haven: Yale University Press.
    [48] Simon C, Frati F, Bekenbach A, Crespi B, Liu H, Flook P. 1994. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a complication of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87: 651-701.
    [49] Singh TR, Shneor O, Huchon D. 2008. Bird mitochondrial gene order: insight from 3 warbler mitochondrial genomes. Molecular Biology and Evolution, 25(3): 475-477.
    [50] Sorenson MD. 2003-02-14 [2010-1-8]. Avian mtDNA primers. Boston: Boston University, http://people.bu.edu/msoren/Bird.mt.Primers.pdf.
    [51] Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP. 1999. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Molecular Phylogenetics and Evolution, 12(2): 105-114.
    [52] Stanton DJ, Daehler LL, Moritz CC, Brown WM. 1994. Sequences with the potential to form stem-and-loop structures are associated with coding-region duplications in animal mitochondrial DNA. Genetics, 137(1): 233-241.
    [53] Stoneking M, Soodyall H. 1996. Human evolution and the mitochondrial genome. Current Opinion in Genetics & Development, 6(6): 731-736.
    [54] Vawter L, Brown WM. 1993. Rates and patterns of base change in the small subunit ribosomal RNA gene. Genetics, 134(2): 597-608.
    [55] Webb DM, Moore WS. 2005. A Phylogenetic analysis of wood Peckers and their allies using 125, Cytb, and COI nucleotide sequences (class Aves; order Piciformes). Molecular Phylogenetics and Evolution, 36(2): 233-248.
    [56] Wenink PW, Baker AJ, Tilanus MG. 1994. Mitochondrial control region sequences in two shorebird species: the turnstone and the dunlin, and their utility in population genetic studies. Molecular Biology and Evolution, 11(1): 22-31.
    [57] Wolstenholme DR. 1992a. Animal mitochondrial DNA: structure and evolution. International Review of Cytology, 141: 173-216.
    [58] Wolstenholme DR. 1992b. Genetic novelties in mitochondrial genomes of multicellular animals. Current Opinion in Genetics & Development, 2(6): 918-925.
    [59] Wolstenholme DR, Okimoto R, Macfarlane JL. 1994. Nucleotide correlations that suggest tertiary interactions in the TV-replacement loop-containing mitochondrial tRNAs of the nematodes, Caenorhabditis elegans and Ascaris suum. Nucleic Acids Research, 22(20): 4300-4306.
    [60] Woese CR, Magrum LJ, Gupta R, Siegel RB, Stahl DA, Kop J, Crawford N, Brosius J, Gutell R, Hogan JJ, Noller HF. 1980. Secondary structure model for bacterial 16S ribosomal RNA phylogenetic, enzymatic and chemical evidence. Nucleic Acids Research, 8(10): 2275-2293.
    [61] Xiao B, Ma F, Sun Y, Li QW. 2006. Comparative analysis of complete mitochondrial DNA control region of four species of Strigiformes. Acta Genetica Sinica, 33(11): 965-974.
    [62] Yokobori S, Pääbo S. 1995. Transfer RNA editing in land snail mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 92(22): 10432-10435.
    [63] Zheng GM. 2002. The World Birds Classification and Distribution List. Beijing: Science Press, 103-243. [郑光美. 2002. 世界鸟类分类与分布名录. 北京: 科学出版社, 103-243.]
  • [1] Chatmongkon Suwannapoom, Ya-Jiang Wu, Xing Chen, Adeniyi C. Adeola, Jing Chen, Wen-Zhi Wang.  Complete mitochondrial genome of the Thai Red Junglefowl (Gallus gallus) and phylogenetic analysis, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.028
    [2] Guo-Gang Li, Ming-Xia Zhang, Kyaw Swa, Kyaw-Win Maung, Rui-Chang Quan.  Complete mitochondrial genome of the leaf muntjac (Muntiacus putaoensis) and phylogenetics of the genus Muntiacus, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.058
    [3] Yong-Gui MA, Yuan HUANG, Fu-Min LEI.  Sequencing and phylogenetic analysis of the Pyrgilauda ruficollis (Aves, Passeridae) complete mitochondrial genome, Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.2.081
    [4] WANG Xiao-Can, SUN Xiao-Yan, SUN Qian-Qian, ZHANG Da-Xiu, HU Jing, YANG Qun, HAO.  Complete mitochondrial genome of the laced fritillary Argyreus hyperbius (Lepidoptera: Nymphalidae), Zoological Research. doi: 10.3724/SP.J.1141.2011.05465
    [5] YANG Hui, HUANG Yuan.  Analysis of the complete mitochondrial genome sequence of Pielomastax zhengi, Zoological Research. doi: 10.3724/SP.J.1141.2011.04353
    [6] CHEN Shi-Yi, XU Ling, Lü Long-Bao, YAO Yong-Gang.  Genetic diversity and matrilineal structure in Chinese tree shrews inhabiting Kunming, China, Zoological Research. doi: 10.3724/SP.J.1141.2011.01017
    [7] SHAN Wen-Juan, LIU Jiang, Mahmut HALIK.  Genetic structure and subspecies divergence of Lepus capensis in Xinjiang, Zoological Research. doi: 10.3724/SP.J.1141.2011.02179
    [8] YANG Chao, LEI Fu-Min, HUANG Yuan.  Sequencing and Analysis of the Complete Mitochondrial Genome of Pseudopodoces humilis (Aves, Paridae), Zoological Research. doi: 10.3724/SP.J.1141.2010.04333
    [9] LIU Bin, ZHOU Li-zhi, WANG Wen-ge, SHEN San-bao, HAN De-min.  Seasonal Dynamics of the Avian Guild Structure of Mountain Secondary Forest in Dabieshan Mountain, Zoological Research. doi: 10.3724/SP.J.1141.2009.03277
    [10] GAO Jia, CHENG Chun-hua, HUANG Yuan.  Analysis of Complete Mitochondrial Genome Sequence of Aeropus licenti Chang, Zoological Research. doi: 10.3724/SP.J.1141.2009.06603
    [11] CHANG Yu-mei, KUANG You-yi, LIANG Li-qun, LU Cui-yun, HE Jian-guo.  Searching for Protein-coding Genes Using Microsatellites in Common Carp by Comparing to Zebrafish EST Database, Zoological Research. doi: 10.3724/SP.J.1141.2008.04373
    [12] YAN Liang, ZHANG Yan, WANG Ning, ZHANG Li, NIE Liu-wang.  Comparison of Mitochondrial Control Region Sequences Between Chelydridae and Platysternidae, Zoological Research. doi: 10.3724/SP.J.1141.2008.02127
    [13] YANG Bo, CHEN Xiao-yong, YANG Jun-xing.  Structure of the Mitochondrial DNA Control Region and Population Genetic Diversity Analysis of Anabarilius grahami (Regan), Zoological Research. doi: 10.3724/SP.J.1141.2008.04379
    [14] DING Fang-mei, SHI Hong-wen, HUANG Yuan.  Complete Mitochondrial Genome and Secondary Structures of lrRNA and srRNA of Atractomorpha sinensis (Orthoptera, Pyrgomorphidae), Zoological Research.
    [15] ZHU Shi-hua, ZHENG Wen-juan, ZOU Ji-xing, YANG Ying-chun, SHEN Xi-quan.  Mitochondrial DNA Control Region Structure and MolecularPhylogenetic Relationship of Carangidae, Zoological Research.
    [16] HAN De-min, ZHOU Kai-ya.  Complete Sequence and Gene Organization of the Mitochondrial Genome of Tokay (Gekko gecko), Zoological Research.
    [17] LI Qing-qing, ZHANG Ya-ping.  A Molecular Phylogeny of Macaca Based on Mitochondrial Control Region Sequences, Zoological Research.
    [18] KE Xin, XU Jian-ming, XIE Rong-dong, WENG Chao-lian, YANG Yi-ming.  Community Structure and Seasonal Change of Soil Mesofauna in Quzhou Region,Zhejiang, Zoological Research.
    [19] YAO Yong-Gang, KONG Qing-Peng, ZHANG Ya-Ping.  Methods and Thoughts on Detecting Nucleotide Variations in Human Mitochondrial DNA, Zoological Research.
    [20] LIU Ci-quan, WANG Ying, ZHOU Ming-pei, LI Jing-yan.  Studies of 5S RNA Secondary Structure 1.A microcomputer method on the basis of the Fox model, Zoological Research.
  • 加载中
计量
  • 文章访问数:  930
  • HTML全文浏览量:  27
  • PDF下载量:  2922
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-23
  • 修回日期:  2013-01-13
  • 刊出日期:  2013-06-08

目录

    /

    返回文章
    返回