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Supplementary Results and Discussion
Carbon metabolism

The genomes of the epibiont and endosymbiont encode genes for glycolysis,
glyconeogenesis and non-oxidative branch of the pentose phosphate pathway (Fig. 3B
& Table S4). Like the epibionts of Bathymodiolus azoricus and Gigantidas childressi,
the 6-phosphofructokinase (pfk) and transaldolase (tal) are missing in the epibiont of G.
haimaensis, indicating its potential deficiency in using sucrose and fructose (Assié et
al., 2020), and the conversion between D-erythrose-4P and D-sedo-heptulose-7P.
However, the epibiont encodes pfk, fructose-1,6-bisphosphatase (fbp) and fructose-
bisphosphate aldolase (fba), which allows the production of 5-phospho-alpha-D-ribose
1-diphosphate (PRPP). The missing of fop and fba in the endosymbiont indicates its
deficiency of PRPP synthesis. The missing of phosphoenolpyruvate synthase genes
(ppsA) and phosphoenolpyruvate carboxykinase (pck) in the genomes of the epibiont
and endosymbiont indicates that they lack the ability to convert pyruvate and
oxaloacetate to phosphoenolpyruvate. Besides, most genes involved in polyglucose
biosynthesis are missing in the epibionts, but the complete pathway is present in the
endosymbiont (Fig. 3B). The difference of carbon metabolism may imply the tripartite
interaction among host and two symbionts to confirm the needs in carbon metabolism.

Hydrogen oxidation



Some deep-sea chemosynthetic symbionts, such as the thiotroph endosymbiont and
campylobacterial epibiont of vent mussel B. azoricus (Petersen et al., 2011; Assi¢ et al.,
2020) are known to encode genes as potential auxiliary electron donors from hydrogen.
However, the epibiont and endosymbiont of G. haimaensis do not encode hydrogenase
genes, indicating their lack of the ability to use hydrogen as an energy source. This
result is consistent with the absent of hydrogenase gene in the epibiont of G. childressi
(Assié et al., 2020). Since both G. childressi and G. haimaensis inhabit cold seeps, our
results appear to support the hypothesis that hydrogenases are unique to bacterial
symbionts of hydrothermal vent mussels (Petersen et al., 2011).

Nitrogen assimilation in the two symbionts

Exogenous nitrogen, typically available in cold seeps in the form of nitrate, is crucial
for deep-sea mussels (Petersen et al., 2011). A previous study found nitrate reductase
activity for ammonium assimilation in the gill tissue of symbiotic mussels (Lee &
Childress, 1996). Assimilatory nitrate reduction (ANR) generally uses cytoplasmic
nitrate reductase (NasAB), while dissimilatory nitrate reduction (DNR) usually applies
membrane-bound respiratory nitrate reductase (NarGHI) or the periplasmic nitrate
reductase enzyme complex (NapAB) for the reducing nitrate to nitrite (Potter et al.,
2001). We found both ANR and DNR genes in the genome of the G. haimaensis
epibiont, among them narG and napB were actively expressed (Fig. 4, Table S7).
Following nitrate reduction to nitrite, the product may be further reduced to ammonia
via DNR by a NADH form nitrite reductase (NirBD) and a cytochrome c nitrite
reductase (NrfAH) (Yuan & Wang, 2021), which were also identified in the G.
haimaensis epibiont (Fig. 4). The resultant ammonium can then be used for the
glutamine and glutamate synthesis (Reitzer, 2003). In addition, we found evidence of
respiratory denitrification, through which nitrite is converted to nitrogen by nitric oxide
reductase (NorBC) and nitrous oxide reductase (NosZ) (Fig. 4, Table S7). Among these
enzymes, glutamine synthetase and NorC were highly abundant in the epibiont
proteome (Fig. 4 & S4). Unexpectedly, nitrate/nitrite transporter (nrf) is missing in the
campylobacterial epibiont, indicating that either there is another source of nitrate, or
their nitrogen assimilatory primary depends on ammonia transportation from the fluid
via ammonia permease (Table S8). The epibionts of G. childressi and B. azoricus have
been suggested to incorporate ammonia via high-affinity ammonium uptake
transporters (Assié et al., 2020). Consistent with this, we found a transcriptionally
active ammonia permease in the epibiont of G. haimaensis, while nitrate reduction
genes were all lowly expressed (Fig. 4), indicating the potential role of the ammonium
transporter in its nitrogen assimilation. In contrast, the endosymbiont of G. haimaensis
encodes a highly expressed ammonia permease and Nrt for nitrate intake (Fig. 4, Table
S7), and the narGHI was expressed at a high level than nas4B, and NarGH proteins
were abundant (Fig. 4). These results imply that the endosymbiotic MOB of G.
haimaensis primary relies on DNR for nitrate reduction. Besides, respiratory
denitrification is incomplete in the MOB genome of G. haimaensis, B. azoricus and B.
Jjaponicus, with the missing of norC and nosZ (Table S7). Taken together, our results
indicate that both the epibiont and endosymbiont have the abilities of nitrogen



assimilation, which is critical for these bacteria living in the deep ocean with very little
nitrogen supply.

Complementary fatty acid metabolism in the holobiont

Both the epibiont and endosymbiont genomes encode a complete type II fatty acid (FA)
synthesis pathway but lack most enzymes for FA degradation, such as acyl-CoA
dehydrogenase and enoyl-CoA hydratase (Fig. 3 & Table S7). This implies that the two
symbionts lack the ability to degrade FAs by beta-oxidation. In contrast, our searching
of the host transcripts recovered all these key genes in the FA degradation pathway,
whereas some enzymes are missing in the FA biosynthesis pathway, such as 3-oxoacyl-
[acyl-carrier protein] reductase and 3-hydroxyacyl-thioester dehydratase. Indeed, the
enoyl-[acyl-carrier protein] reductase I (Fabl) was among the most abundant 70
proteins of Gammaproteobacteria (Fig. 7). Therefore, the host’s requirement for long-
chain FAs may be met by the epibiont and endosymbiont. These results highlight the
complementary FAs metabolism in the tripartite holobiont. A previous study of the cold-
seep vesicomyid clam Calyptogena phaseoliformis showed that its endosymbiotic
sulfur-oxidizing Gammaproteobacteria could supply n-4 family non-methylene
interrupted polyunsaturated fatty acids (NMI-PUFA) to the host (Saito, 2007). Similar
to C. phaseoliformis, the primary unsaturated FAs are n-4 and n-7 NMI-PUFA in the
deep-sea mussels B. japonicus and B. platifrons which host endosymbiotic methane-
oxidizing Gammaproteobacteria, in comparision the shallow-water mussel Mytilus
galloprovincialis whose FAs are characterized by n-3 unsaturated FAs derived from
their algal food (Saito, 2008). Besides, the differences in unsaturated FAs between
Calyptogena (n-4 NMI-PUFA) and Bathymodiolus (n-4 and n-7 NMI-PUFA) illustrate
a taxonomic specificity of symbiotic bacteria and differences in FA physiology between
thiotrophic and methanotrophic symbionts (Saito, 2008). Our result shows that G.
haimaensis host thiotrophic epibiont and methanotrophic endosymbiont, which might
provide different FAs to their host.

Virulence of symbiotic bacteria

Several genes encoding cold shock proteins (csp) were discovered in the endosymbiotic
Gammaproteobacteria, with the total transcriptional abundance of all the csp transcripts
being the highest (Fig. S13). Present in all organisms, Csp regulates the cold adaption
of cell by mediating the expression to plasma membrane component and downstream
genes (Wu et al., 2006), which improves the cellular tolerance of low temperature, high
hydraulic pressure and salinity (Wemekamp-Kamphuis et al., 2002; Schmid et al.,
2009). Csp had been demonstrated to play a key role in the stress response of membrane,
movement, and biofilm formation in bacteria (Michaux et al., 2017). Besides, Csp has
been shown to affect the pathogenic bacterial virulence, which could help the bacteria
to resist host cell and adapt to the severe intercellular environment (Wang et al., 2014).
Therefore, high expression of csp detected in this study may indicate its involvement
in adaptation of the endosymbiont to the host’s intracellular environment.

Several genes related to the two-component system were found in both two symbiont
genomes, including the OmpR family that functions in bacterial adhesion and invasion
and chemotaxis protein that functions in signal transduction (Groisman, 2001; Zhao et
al., 2020). Notably, the KDP operon response regulator (KdpE, belonging to OmpR
family), highly expressed among the gammaproteobacterial sequences (Fig. S13), is an



adaptive regulatory protein that has been shown to affect the virulence and intercellular
survival of pathogens (Freeman et al., 2013). The chemotaxis protein CheY is a primary
two-component system protein in the campylobacterial epibiont of G. haimaensis,
which may be responsible for the transmission of external stimulus (Yang et al., 2020).
Therefore, the different dominant two-component system proteins between the epibiont
and endosymbiont may reflect their responses to the different intracellular and
extracellular associations with the host, respectively. In addition, proteases Clp, which
is responsible for bacterial virulence, was highly expressed in the endosymbiont but
lowly expressed in the epibiont (Frees et al., 2014), which may be related to their
different capabilities in host invasion and resistances to host digestion.

Secretion systems and transporters in the symbionts

Protein secretion is crucial for the interaction between symbiotic bacteria and the host
(Tseng et al., 2009). The G. haimaensis epibiont and endosymbiont encode complete
general secretion (Sec) dependent and twin arginine targeting (Tat) dependent
translocation pathways (Table S8). These two secretion systems have been shown to
translocate folded and unfolded proteins in the periplasmic space, including adhesins,
peptidase and toxins (Natale et al., 2008). After transported by the Sec or Tat pathway,
these proteins are secreted into the extracellular environment by type II secretion
system (T2SS) (Costa et al., 2015). The endosymbiont of G. haimaensis encodes a
complete T2SS, while the epibiont encodes nearly half of the 11 general secretion
pathway protein genes (gspDGHJE) with relatively low expression levels comparing
to the endosymbiont (Table S8). T2SS, identified in the genomes of SOB and MOB
endosymbionts of B. azoricus, has been suggested to transport folded exoproteins to the
host (Ponnudurai et al., 2017). It is important for the mediation of symbiotic
relationship in the symbionts of deep-sea mussel B. manusensis and tubeworm
Arcovestia ivanovi, such as the providing of nutrients to the host, adjusting symbiotic
environment, and facilitating the symbiosis establishment (Li et al., 2020). It has also
been reported in the campylobacterial symbiont of the vent snail Alviniconcha
marisindica and A. boucheti (Li et al., 2020; Yang et al., 2020). Besides, T2SS has been
suggested to be an essential virulence protein in the endosymbiont of the vent tubeworm
Riftia pachyptila (Li et al., 2018), and mediate cellular interactions between a cold seep
sponge and its sulfur-oxidizing symbiont (Tian et al., 2017). The presence of a complete
T2SS in the endosymbiont and an incomplete T2SS in the epibiont indicates a
potentially strong interactions between the endosymbiont and the host, whereas a weak
interaction between the epibiont and the host gill.

Transporters are important for material transfer between eukaryotic hosts and bacterial
symbionts (Zheng et al., 2017). We found three and four kinds of amino acids, vitamins
and cofactors transporters in the epibiont and endosymbiont genomes, respectively
(Table S8). In the epibiont, there were transporters are highly expressed with high
protein abundance. For instance, polar amino acid transporter (ranks 1% in the epibiont
transcriptome) and general L-amino acid transporter (ranks 22" in the epibiont
transcriptome and 27" in proteome), while these transporters have not been detected in
the top 70 highly expressed genes or the top 70 abundant proteins in the endosymbiont
(Fig. S4 & S13). These results unveil that the epibiont may be active in the
transportation of required amino acids (e.g., tryptophan and tyrosine) to the host (Table
2), in comparison, the endosymbiont may provide such nutrients primally depend on
host intercellular digestion instead of transportation (Yang et al., 2020). Meanwhile,
other unique transporters in the symbionts, such as the glucose/mannose and zinc



transporters in the epibiont, and the heme and phospholipid transporters in the
endosymbiont, perhaps reflecting their different substrates for transportation. Besides,
expression levels of the unique transporters are lower than those of the amino acid
transporters (Table S8). For instance, the relatively high level of heme exporter proteins
in the endosymbiont allows the exportation of heme (e.g., siroheme) into host cell
(Newton & Rice, 2020), which may not be ablesynthesis in the host (Table 2). In
addition, the epibiont and endosymbiont both encode ammonia, molybdate, phosphate,
branched-chain amino acid, and lipopolysaccharide transporters (Table S8). Among
them, ammonia transporter is highly expressed in both symbionts, which is responsible
for the intake of NH4'/NHj to assimilate nitrogen (Yang et al., 2007). In addition,
phosphate transporter (efficient phosphate uptake system PstSCAB) is highly expressed
in the endosymbiont, which is also identified in the symbiont of B. puteoserpentis
(Ansorge et al., 2019), indicating the endosymbiont of G. haimaensis may obtain
phosphate from host cell.

Highly expressed genes in host gill

Gill is the organ that harbors the symbionts. Therefore, to gain insight into the host’s
functions in symbiosis, we compared the gene expression levels between gill and foot
tissues. DEGSeq?2 analysis resulting in 1 169 highly expressed genes in the gill tissue
and 856 in the foot tissue (Fig. S20). Among the highly expressed genes in the gill tissue,
73 KEGG pathways were enriched, including innate immunity (lysosome, Toll and Imd
signaling pathway), small molecules metabolisms (sulfur, amino acid, sugar, and lipid),
and transporters and membrane trafficking that are likely related to symbiosis (Fig. S23).
Besides, the enrichment of sulfur metabolism genes is consistent with the need of the
host to detoxify sulfide, which is in general toxic to eukaryotic cells. It has been
suggested that deep-sea mussel G. platifrons oxidizes sulfide to less toxic sulfur rapidly
using duplicated SQR proteins and provide electrons (Sun et al., 2022). The epibiont of
G. haimaensis requires sulfur-rich environment to support its energy demand, which
may bring more sulfide to the holobiont. Therefore, the active sulfur metabolism in the
host gill is significant for its survival. Besides, the active transporters and membrane
trafficking proteins prove the nutrients interdependency between the symbionts and
host. As we mentioned above, the epibiont encodes a high-level general L-amino acid
transporter (Fig. S4 & S13). Particularly, we found four and one genes of L-type amino
acid transporter SLC7A9 15 and SLC7AS, respectively, which were highly expressed
in the gill of G. haimaensis with about 2.2 to 8.4-fold higher than in foot, indicating the
active L-amino acid intake in the gill (Palacin & Kanai, 2004; Elolimy et al., 2020).
The highly expressed metabolic pathways and transporters in symbiotic gill of G.
haimaensis indicate its intimated symbiotic relationship with the symbionts (Yang et
al., 2020). These results are consistent with previous transcriptomic studies of B.
azoricus, which revealed the amino acid metabolism and membrane transport genes
were enriched in the gill bacteriocytes that harbor endosymbiotic bacteria (Egas et al.,
2012).
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Supplementary Figure S1 Original maximum-likelihood (ML) phylogenetic tree
of Figure 3

Tree was constructed using 120 marker genes under the LG+F+R4 model with 1 000
bootstrap replicates. Campylobacterial branch is indicated by purple lines,
gammaproteobacterial SOB and MOB branch is indicated by orange and light blue
lines, respectively. Genomes assembled in this study are indicated by red letters.



9 9

= g

f.—_-, 90 E‘E 90
q) p—

2 3

© &

T 80+ - 80
3 S

© ®

§2) »

R=2 c

s 70 © 70
2 o

© a

= )

o =

2 60 T 60
© ()

[) 04

n'd

50 T T T T T T 50 T T T
Gill-1 Gill-2 Gill-3 Foot-1Foot-2 Foot-3 Gill-1 Gill-2 Gill-3

Il Campylobacteria epibiont MOB (endosymbiont) Host
Supplementary Figure S2 Gene expression levels and protein abundances of G.
haimaensis and its symbionts in the gill and foot tissues
A: Relative gene expression levels of campylobacterial epibiont,
gammaproteobacterial endosymbiont (MOB), and host in the gill and foot tissues. B:
Relative protein abundances of campylobacterial epibiont, gammaproteobacterial
endosymbiont (MOB), and host in the gill tissue.



Cold seep fluid

Acetyl-CoA

SOX
complex
CBB
. cycle

TCA cycle

CO2

2-Ketoglutarate

Succinyl-CoA
k} Amino acids
biosynthesis,
DctQMP
CHa
v v

SLC4 T
(SLCZG) (SLC13A2/3/5) ( . osrters)

Gigantidas haimaensis gill

HCOs . SuccAinate

Campylobacteria
epibiont

AAs transporters

Fumarate
Succinate Amino acids

v Acstyl-CoA
CHs ——————BGABE—> CH:OH Carbon oo
via RUMP

Methane
oxidation

Gammaproteobacteria endosymbiont

Supplementary Figure S3 Diagram of energy sources, putative carbon
assimilation, and TCA cycle in tripartite holobiont of G. haimaensis

Host gill cytosol is indicated in yellow, Campylobacteria and Gammaproteobacteria
are indicated in green and blue, respectively. Red bubbles indicate enzymes present,
gray bubbles indicate missing enzymes. Full names of enzymes are included in
Supplementary Table S7.



1 Polar amino acid transportor

3 Anti-sigma-28 factor, fig

4 Sulfide dehydrogenase fccB
5 Uncharacterized protein

6 Sulfur-oxidizing protein soxZ
7 Sulfur-oxidizing protein soxY

9 L-cysteine S-thiosulfotransferase soxA

10 Ribulose-bisphosphate carboxylase cbbS
11 F-type H+-transporting ATPase E

12 Acyl-CoA thioester hydrolase

13 Cytochrome c

[I— 14 Predicted membrane protein

15 Nitrogen regulatory protein P-Il 1 ginB
16 L-cysteine S-thiosulfotransferase soxX
17 Aldehyde dehydrogenase aldB

18 GTP cyclohydrolase Il ribBA

19 Ribulose-bisphosphate carboxylase cbbL
20 DNA-binding protein hupB

21 Thioredoxin 1

22 General L-amino acid transportor

23 S-disulfanyl-L-cysteine oxidoreductase soxD
24 Prokaryotic Cytochrome C oxidase subunit IV

25 Domain of unknown function DUF302
26 Acyl carrier protein acpP

27 Family of unknown function DUF4006
28 Calcium-binding protein cmL

29 Elongation factor tuf

31 Small subunit ribosomal protein S17
32 Large subunit ribosomal protein L16
33 Peptidoglycan-associated lipoprotein
|34 Predicted membrane protein
'35 Cytochrome c oxidase subunit Il coxB
36 Small subunit ribosomal protein S19
37 Cleavage stimulation factor subunit 2
| 38 Glutamine synthetase ginA
‘1 l 39 Cytochrome c oxidase subunit Ill coxC
40 Large subunit ribosomal protein L33
41 Small subunit ribosomal protein S9
[ 42 Small subunit ribosomal protein S16
43 Cation/acetate symporter ActP
44 Large subunit ribosomal protein L29
45 Large subunit ribosomal protein L14
46 STAM-binding protein

n 47 Cytochrome c oxidase subunit | coxA
I 48 Cytochrome c oxidase cbb3-type subunit Il
| 49 Large subunit ribosomal protein L15
i 50 Small subunit ribosomal protein S14
51 Large subunit ribosomal protein L20

5
Gill-1 Gill-2 Gill-3

8 CCR4-NOT transcription complex subunit 10

30 Cytochrome c oxidase cbb3-type subunit IV

2 Utilization of glycolate and propanediol gicG

B

2 Cytochrome subunit of sulfide dehydrogenase fccA

log,(TPM)
35

1 Large subunit ribosomal protein L5

2 Small subunit ribosomal protein S19

3 Aldehyde dehydrogenase AldB

4 GTPase ObgE

5 Adenylate Kinase Adk

6 Elongation factor Tuf

7 DNA-binding protein HupB

8 Sulfide dehydrogenase FccB

9 Oligopeptide transportor

10 Glutamine synthetase GInA

11 C4-dicarboxylate-binding protein DctP
12 Mannitol/chloroaromatic transportor
13 F-type H+/Na+-transporting ATPase D
14 Exodeoxyribonuclease Il

15 F-type H+/Na+-transporting ATPase A
16 Aldehyde:ferredoxin oxidoreductase Aor
17 RNA polymerase nonessential o factor
18 Phospholipid-binding lipoprotein MiaA
19 Molecular chaperone HtpG
Glucose/mannose transportor
Formate dehydrogenase Fdh

Cold shocK protein Csp

Major outer membrane protein PorB
Phosphate acetyltransferase

OmpR family, response regulator
GTP cyclohydrolase Il

General L-amino acid transportor
TransKetolase TKT

Small subunit ribosomal protein S3
Polycystin 1.2

L-cysteine S-thiosulfotransferase SoxA
33 Glutamate dehydrogenase (NADP+)
34 Nitrogen regulatory protein P-11 1 GInB
35 Small subunit ribosomal protein S5
GDPmannose 4,6-dehydratase

Nitric oxide reductase subunit C Nor
38 TRAP-type periplasmic protein

39 DNA-directed RNA polymerase subunit §
Peroxiredoxin 2/4

ATP-dependent RNA helicase ”
Peptidoglycan lipoprotein log, (iIBAQ)
43 Uncharacterized conserved protein
44 Aspartyl-tRNA synthetase

45 Small subunit ribosomal protein S9
46 Small subunit ribosomal protein S4
47 Large subunit ribosomal protein L2
48 Single stranded DNA exonuclease
49 NitT/TauT family transportor

50 Multiple sugar transportor

151 Aspartate Kinase LysC

52 Aconitate hydratase 2 AcnB

O =2 N WHOON®

Gill-1 Gill-2 Gill-3

Supplementary Figure S4 Top 52 highly expressed genes (A) and detected
proteins (B) of G. haimaensis campylobacterial epibiont

Genes and proteins with no annotation or unknown function are excluded. In (A),
color gradient represents gene expression level based on logio-transformed transcripts
per million (logio(TPM)), and in (B) color gradient indicates protein abundance
evaluated according to absolute protein quantification (logio(iBAQ)).
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Supplementary Figure S5 ML tree of amino acid sequences of ribulose 1,5-
bisphosphate carboxylase large subunit (CbbL) involved in CBB cycle

Tree was constructed based on LG+R4 model with 1 000 bootstrap replicates. Each
branch comprising sequences from the same taxon was collapsed into one leaf.

Numbers associated with each terminal are identical to those in Supplementary Figure
S6 of Assié et al. (2020).
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Supplementary Figure S6 ML tree of amino acid sequences of ribulose 1,5-
bisphosphate carboxylase small subunit (CbbS) involved in CBB cycle

Tree was constructed based on Q.yeast+G4 model with 1 000 bootstrap replicates.
Each branch comprising sequences from the same taxon was collapsed into one leaf.
Numbers associated with each terminal are identical to those in Supplementary Figure
S7 of Assié et al. (2020).
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Supplementary Figure S7 ML tree of amino acid sequences of glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) involved in the CBB cycle

Tree was constructed based on LG+R4 model with 1 000 bootstrap replicates. Each
branch comprising sequences from the same taxon was collapsed into one leaf.
Numbers associated with each terminal are identical to those in Supplementary Figure
S9 of Assié et al. (2020).
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Supplementary Figure S8 ML tree of amino acid sequences of fructose
bisphosphate aldolase (FBA) involved in the CBB cycle

Tree was constructed based on LG+R5 model with 1 000 bootstrap replicates. Each
branch comprising sequences from the same taxon was collapsed into one leaf.

Numbers associated with each terminal are identical to those in Supplementary Figure
S11 of Assié et al. (2020).
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Supplementary Figure S9 ML tree of amino acid sequences of fructose 1,6-
bisphosphatase (FBP) involved in the CBB cycle

Tree was constructed based on LG+G4 model with 1 000 bootstrap replicates. Each
branch comprising sequences from the same taxon was collapsed into one leaf.

Numbers associated with each terminal are identical to those in Supplementary Figure
S12 of Assi¢ et al. (2020).
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Supplementary Figure S10 ML tree of amino acid sequences of transketolase
(TKT) involved in the CBB cycle

Tree was constructed based on LG+R5 model with 1 000 bootstrap replicates. Each
branch comprising sequences from the same taxon was collapsed into one leaf.
Numbers associated with each terminal are identical to those in Supplementary Figure

S13 of Assié et al. (2020).
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Supplementary Figure S11 ML tree of amino acid sequences of ribulose-
phosphate-3-epimerase (RPE) involved in the CBB cycle

Tree was constructed based on LG+G4 model with 1 000 bootstrap replicates. Each
branch comprising sequences from the same taxon was collapsed into one leaf.
Numbers associated with each terminal are identical to those in Supplementary Figure

S14 of Assié et al. (2020).
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Supplementary Figure S12 ML tree of amino acid sequences of

phosphoribulokinase (PRK) involved in the CBB cycle

Tree was constructed based on LG+G4 model with 1 000 bootstrap replicates. Each
branch comprising sequences from the same taxon was collapsed into one leaf.

Numbers associated with each terminal are identical to those in Supplementary Figure
S8 of Assié et al. (2020).
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Supplementary Figure S13 Top 70 expressed genes (A) and abundant proteins
(B) of the G. haimaensis gammaproteobacterial endosymbiont
Unknown genes and proteins were excluded. Color gradient represents transcriptional
and protein levels based on logjo-transformed transcripts per million (logio(TPM)) and
intensity-based absolute protein quantification (logio(iBAQ)), respectively.
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Supplementary Figure S14 Original ML phylogenetic tree of different sources of
SoxB protein (S-sulfosulfanyl-L-cysteine sulfohydrolase)

Tree was constructed based on LG+R7 model with 1 000 bootstrap replicates.
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Supplementary Figure S15 Phylogenetic relationships among Campylobacteria
and distribution of SoxB orthologs

Black dots at branch points indicate distribution of SoxB orthologs identified by
OrthoFinder. Number after a genome association number represents number of SoxB
orthologs. Campylobacteria are in orange, Gammaproteobacteria are in gray and
considered to be the outgroup. Tree was constructed using 120 marker genes and the
Q.yeast+R10 model with 1 000 bootstrap replicates.
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Supplementary Figure S16 Genes related to biosynthesis of amino acids,
vitamins, and cofactors found in G. haimaensis gill and its epibiont and
endosymbiont

Green box indicates gene is present, and gray indicates gene is missing.
Abbreviations: Camp: Campylobacteria; Gamm: Gammaproteobacteria; Genes and
proteins required for each pathway were obtained from Ponnudurai et al. 2017a. Full
gene names and their expression levels are given in Supplementary Table SO.
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Supplementary Figure S17 ML tree of amino acid sequences of carbonic

anhydrases (CAs) in selected bivalves

Tree was constructed based on VT+R4 model with 1 000 bootstrap replicates,

sequences identified in this study are shown in red letters. Sequences of mussels and
clam were obtained using BLASTp. Abbreviations: Ama: Archivesica marissinica;
Gpl: Gigantidas platifrons; Mco: Mytilus coruscus; Med: Mytilus edulis; Mga:
Mytilus galloprovincialis; Mph: Modiolus philippinarum; Mye: Mizuhopecten

vessoensis; Tsq: Tridacna squamosa.
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Supplementary Figure S18 Top 30 KEGG enrichment results of top 10% of

KEGG pathway annotation
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Supplementary Figure S19 Top 30 GO enrichment results of top 10% of
expressed genes in gill transcriptome

Different groups are labeled in different colors. Unknown functions or those related to
human disease were excluded.
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Supplementary Figure S20 Differentially expressed genes (DEGs) between G.



haimaensis gill and foot

A: Venn diagram showing unigenes expressed in gill and foot (TPM>0.5). B: Volcano
plot of DEGs between gill and foot (q<0.01). C: Heat map of annotated DEGs
between foot and gill (q<0.01). G1-G3 and F1-F3 indicate gill and foot tissues from
mussels 1-3, respectively.
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Supplementary Figure S21 Heat map of pattern recognition receptor (PRR)
transcripts in host transcriptome

G1-G3 and F1-F3 indicate gill and foot tissues from mussels 1-3, respectively. Color



gradient represents transcription levels based on logio-transformed transcripts per
million (logio(TPM)).
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Supplementary Figure S22 ML tree of amino acid sequences of cathepsins (CTS)
in selected bivalves

Tree was constructed based on WAG+F+G4 model with 1 000 bootstrap replicates,
sequences identified in this study are indicated by red letters.
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Supplementary Figure S23 KEGG enrichment of DEGs between G. haimaensis
gill and foot tissues

Different groups are labeled by different colors. Unknown functions or those related
to human disease were excluded.
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