

Supplementary Materials

Transcription factor *Dmrt1* triggers the SPRY1-NF-κB pathway to maintain testicular immune homeostasis and male fertility

Meng-Fei Zhang¹, Shi-Cheng Wan¹, Wen-Bo Chen¹, Dong-Hui Yang¹, Wen-Qing Liu^{1,2}, Ba-Lun Li¹, Aili Aierken¹, Xiao-Min Du¹, Yun-Xiang Li¹, Wen-Ping Wu¹, Xin-Chun Yang¹, Yu-Dong Wei¹, Na Li¹, Sha Peng¹, Xue-Ling Li³, Guang-Peng Li³, Jin-Lian Hua^{1,4,*}

 ¹ College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
² Center of Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam 1105AZ, Amsterdam, Netherlands
³ Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, Inner Mongolia 010021, China
⁴ Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China

*Corresponding author, E-mail: jinlianhua@nwsuaf.edu.cn

Supplementary Figure S1 Testicular changes in Dmrt1 KD testes

A: Relative mRNA levels of *Dmrt1*, *Ddx4*, *Zbtb16*, *Sycp3*, *Sox9*, *Spry1*, *Tnfa*, *Il1β*, and *Il6* in Si-NC and Si-Dmrt1 testes (*n*=3). B: Heatmap showing genes regulated by *Dmrt1* obtained from RNA-Seq of Si-NC and Si-Dmrt1 testes. C: IF staining of ZBTB16 (Up) and SYCP3 (Down) in Si-NC and Si-Dmrt1 testes. Nuclei were stained with DAPI (blue). Scale bar: 100 µm. D: Quantification of green fluorescence of ZBTB16 and SYCP3 in C (*n*=8). Scale bar: 100 µm. E: Apoptosis ratio of Si-NC and Si-Dmrt1 testes for quantification of TUNEL staining. F: Positive (PCNA) and negative (IgG) controls for IHC. Scale bar: 20 µm. **: P<0.01; ***: P<0.001.

Supplementary Figure S2 Expression patterns of Dmrt1 and Spry1

A: *Dmrt1* phylogenetic tree of different species constructed using MEGA v4. Red stars indicate species of concern. B: *Spry1* phylogenetic tree of different species constructed using MEGA v4. Red stars indicate species of concern. C: RT-PCR analysis of *Dmrt1* expression levels in different tissues of adult mice. All results were compared with testis results. D: RT-PCR analysis of *Spry1* expression levels in different tissues of adult mice. All results were compared with testis results. D: RT-PCR analysis of *Spry1* expression levels in different tissues of adult mice. All results were compared with testis results. E: qRT-PCR analysis (top panel) and semi-quantitative RT-PCR analysis (bottom panel) of *Dmrt1* expression in PCDH, OeDmrt1, U6, and shDmrt1 cells (n=3). F: qRT-PCR analysis (top panel) and semi-quantitative RT-PCR analysis (bottom panel) of expression of *Spry1* in PCDH, OeSpry1, U6, and shSpry1 cells (n=3). G: Representative cell pictures during separation and purification of primary Sertoli cells and spermatogonial stem cells from healthy dairy goat testes. Scale bar: 200 µm. H: IF staining of Sertoli cell representative

marker SOX9, DMRT1, and TLR4 receptors. Nuclei were stained with DAPI (blue). Scale bar: 100 μ m. Data are presented as means±SD and represent three independent repetitions. ns: not significant; *: *P*<0.05; **: *P*<0.01; ***: *P*<0.001.

Supplementary Figure S3 Testicular changes in Spry1 KD testes

A: Relative mRNA levels of *Spry1*, *Dmrt1*, and *Zbtb16* in Si-NC and Si-Spry1 testes (n=3). B: Representative blots (left) and quantification (right) of SPRY1 protein levels in Si-NC and Si-Spry1 testes (n=3). C: Relative motility of sperm in Si-NC and Si-Spry1 testes (n=6). D: TNF- α , IL-6, AsAb, and GDNF levels in Si-NC and Si-Spry1 testes measured by ELISA (n=3). E: Heatmap depicting gene expression patterns in Si-NC vs. Si-Spry1 testes. Fold-change>2, up (red) or down (blue) with P<0.01. F: Volcano plot of DEGs determined by RNA-seq analysis of Si-NC vs. Si-Spry1 testes. Dotted line represents FDR cut-off 0.01. n=2 biologically independent samples per condition. G: Top 15 most enriched GO biological processes based on P-values for up-regulated and down-regulated genes in Si-NC and Si-Spry1 testes are shown. Red stars represent important signaling pathways focused on. H: Apoptosis ratio of Si-NC and Si-Spry1 testes for quantification of TUNEL staining. I: Relative mRNA levels of Tnfa, $II1\beta$, Tlr1, Cxcl1, and Cxcl10 in Si-NC and Si-Spry1 testes (n=3). *: P<0.05; **: P<0.01; ***: P<0.001.

Supplementary Figure S4 Spry1 inhibits LPS-induced immune response

A: GO analysis of down-regulated DEGs (Left) and up-regulated DEGs (Right) based on Si-Dmrt1 and Si-Spry1 RNA-seq. B: Relative mRNA levels of *Tnfa* and *Spry1* in TM4 cells treated with LPS for different times (n=3). C: Typical pictures of PCDH, OeSpry1, U6, and shSpry1 TM4 cells. Scale bar: 100 µm. D: Relative mRNA levels of *Vim*, *Nfe2l2*, *Sox9*, *Tjp1*, *ZO1*, *Occludin*, and *Snail1* in U6 and shSpry1 cells (n=3). E: Relative mRNA levels of *Dmrt1*, *Tnfa*, *Tlr4*, *Il1β*, *Il6*, and *Nlrp3* in U6 and shSpry1 cells (n=3). Data are presented as means±SD and represent three independent repetitions. ns: not significant; *: P<0.05; **: P<0.01; ***: P<0.001.

Supplementary	Table S1	SiRNA	sequences	used in	the study

Gene name	siRNA Sequence	
Dmrt1-1	GGGATTGCCAGTGCAAGAAGT	
Dmrt1-2	GCATGGTCATCCAGGATATTC	
Dmrt1-3	GCAGTCAAGATTCTGGCTTGG	
Spry1-1	GGCAGAGGTTAGACTATGACA	
Spry1-2	GCAGGTGTAGAAACTCCAACA	
Spry1-3	GCTACGATTCTGTCCCTAGAC	
Negative control	TTCTCCGAACGTGTCACGT	

Supplementary Table S2 Primers used for vector construction

_

Primer name	Sequence	
LI6 abDmrt1 F	GATCCGCATGGTCATCCAGGATATTCTCAAGAGGAATA	
00-siiDiiiti-r	TCCTGGATGACCATGCTTTTTG	
LIG chDmrt1 P	AATTCAAAAAGCATGGTCATCCAGGATATTCCTCTTGA	
00-siiDiiiti-K	GAATATCCTGGATGACCATGCG	
U6 shSpry1 F	GATCCGCAGGTGTAGAAACTCCAACATCAAGAGTGTTG	
00-siispiyi-i	GAGTTTCTACACCTGCTTTTTG	
U6 shSpry1 P	AATTCAAAAAGCAGGTGTAGAAACTCCAACACTCTTGA	
00-siispiyi-K	TGTTGGAGTTTCTACACCTGCG	
nCDH Dmrt1 F	ACCTCCATAGAAGATTCTAGATGCCGAACGACGACACA	
pedit-dilitt-r	TT	
nCDH Dmrt1 P	GGAGCGATCGCAGATCCTTCGCTCACTCGTCCTCATCC	
ревн-вши-к	TCTT	
pCDH-Spry1-F	AGAATTCCACATGGATTCCCCAAGTC	
pCDH-Spry1-R	TGGATCCAAGTCATGACAGTTTGCC	
pGL3-Spry1-3UTR-F	GGGTACCCCTTCTGGAGGTGGGTTGGAC	
pGL3-Spry1-3UTR-R	CAAGCTTGGAGCTATGCCAAAGGGGTGT	

pGL3-Spry1-5UTR-F	GGGTACCCCGCGAGTGCTCAGCACGCAGGGG
pGL3-Spry1-5UTR-R	CCTCGAGGGTGGAGTGATCTCCAGTTCCAGC
VN173-FLAG-Spry1-FL-F	AGCTTGCGGCCGCGAATTCGATGGATTCCCCAAGTCAG CATGGCA
VN173-FLAG-Spry1-FL-R	ATGGATCTTCTAGAGTCGACTGACAGTTTGCCCTGAGC CCTTGAG
VN173-FLAG-Spry1-C-F	AGCTTGCGGCCGCGAATTCGTGCAAATGTGGAGAGTGT ACGGCCC
VN173-FLAG-Spry1-C-R	ATGGATCTTCTAGAGTCGACTGACAGTTTGCCCTGAGC CCTTGAG
VN173-FLAG-Spry1-N-F	AGCTTGCGGCCGCGAATTCGATGGATTCCCCAAGTCAG CATGGCA
VN173-FLAG-Spry1-N-R	ATGGATCTTCTAGAGTCGACCTTGCCACACTGTTCGCA GATGAAC
VC155-HA-NFκB1-FL-F	CCATGGAGGCCCGAATTCCGATGGCAGACGATGATCCC TACGGAA
VC155-HA-NFκB1-FL-R	CTCGAGAGATCTCGGTCGACATTTTGCCTTCAATAGGT CCTTCCT
VC155-HA-NFκB1-ANK-F	CCATGGAGGCCCGAATTCCGATGGGATTTCAGGATAAC CTCTTTC
VC155-HA-NFκB1-ANK-R	CTCGAGAGATCTCGGTCGACATTTTGCCTTCAATAGGT CCTTCCT
VC155-HA-NFκB1-RHD-F	CCATGGAGGCCCGAATTCCGATGGCAGACGATGATCCC TACGGAA
VC155-HA-NFкB1-RHD-R	CTCGAGAGATCTCGGTCGACATGTCCTGCTCCTTGTCTT CCATGG

Supplementary Table S3 Primers used for qRT-PCR

Gene	Forward sequence	Reverse sequence	
Dmrt1	AATGCCAGCAACCCG	GAGGAGGACTCAGCAGACA	
Sox9	AGTGCCCAAGCACATTTT	AACGCTGGTATTCAGGGA	
Gdnf	CTTTGTGGCTGCTATCCC	GCGAAACGTGGGTCTTT	
Ddx4	CCGCATGGCTAGAAGAGA	AGAAGAAATCCCCGCTGT	
Zbtb16	TTTGTGCGATGTGGTCA	TTTTGGCGAGAGGAAGTC	
Stra8	CCTTCGCAGACCTCACC	TATGCTGGGCCTCACTCT	
Sycp3	GTTCAGCCAATCAGCAGAG	CACCAGGCACCATCTTTAG	
Spry1	GCCTACCCTGCTTGCTC	ACCCACCTCCAGAAGTCAT	
Cldn11	GCTTCGTGGGTTGGATT	GCCCAGTTCGTCCATTT	
Tlr4	CACTGGAACCTCATGCTTT	GATGCTCAACACCAAGGAA	
Nlrp3	CTTTATCCACTGCCGAGAG	AGCTCATCAAAGCCATCC	
Tnfα	GACCCTCACACTCAGATCATCTTC	CACGTAGTCGGGGGCAGCCTTG	
II1β	TGTCCTGATGAGAGCATCC	AAGGTCCACGGGAAAGAC	
Cel19	GGGAAGCTCCGCAGTAT	CGCAACAGCTCCAGAAA	
Cel5	CCACTCCCTGCTGCTTT	ACTTCTTCTCTGGGTTGGC	
Cxcl1	AACCGAAGTCATAGCCACA	GGGGACACCTTTTAGCATC	
Cxcl2	CCTCAACGGAAGAACCAA	AACATCTGGGCAATGGAA	
Cxcl10	AGCCGTGGTCACATCAG	ATCCCAGCCACTTGAGC	
Gata4	AGCAGGCAGAAAGCAAGG	GGGAGGGCGGACTCTATT	
Taf4b	TCCCCAGTCCTTGTGTCT	GCTGTCGTACCTCCTGTTG	
Sox30	ACTTGTCCCCGAAGCAC	AGGTGGTGTCCCAAACAG	
Adamts11	CAAAGGGTCAAGGTCAGC	AGCAGCAAAGTCATTCGG	
Tlr1	TGCCACCCAACAGTCAG	GCATCTCCTAACACCAGCA	
Cxcl13	GGCATTTAGTGACAACCCA	GTCCATCTCGCAAACCTC	
I16	ACAGAAGGAGTGGCTAAGGA	AGGCATAACGCACTAGGTTT	
Occludin	CCTACTCCTCCAATGGCAAA	CTCTTGCCCTTTCCTGCTTT	
Tjp1	ACCATGCCTAAAGCTGTCC	GGAACTCAACACACCACCA	
ZO1	ACGCATCACAGCCTGGTTG	TGGCTCCTTCCTGTACACC	
Snail1	TTCCAGCAGCCCTACGA	ATCGGACAGCGAGGTCA	
Nfe212	GATGGACTTGGAGTTGCC	CCTTCTGGAGTTGCTCTTG	
Vim	CTCCTACGATTCACAGCCA	GAGCCACCGAACATCCT	
GAPDH	CGTGTCCGTTGTGGATCTGA	TGAAGTCGCAGGAGACAACC	
Actin	CCTCACTGTCCACCTTCC	GGGTGTAAAACGCAGCTC	