Supplementary Materials

	*	20	*	40	*	60	*	80	*	
AFA42954.1	MFHVSFRYIFGIPP	LILVLLPGASS	SDCDIDGKSDK	(VFGNILMVSFNA	LDSMRDIC	SNCQQNASNI	FKKNSCDDN	K <mark>evkflyravrki</mark>	LKQC :	90
IL7 T1	MFHVSFRYIFGIPP	LILVLLPGASS	SDCDIDGKSDK	(VFGNILMVSFNA	LDSMRDIC	SNCQQNASNI	FKKNSCDDN	K <mark>EVKFLYRAVRKI</mark>	LKQC :	90
AFA42955.1	MFHVSFRYIFGIPP	LILVLLPGASS	SDCDIDGKSDK	VFGNILMVSFNA	AL			-EVKFLYRAVRKI	LKQC :	63
IL7 T2	MFHVSFRYIFGIPP	LILVLLPGASS	SDCDIDGKSDK	VFGNILMVSFNA	AL			-EVKFLYRAVRKI	LKQC :	63
AFA42956.1	MFHVSFRYIFGIPP	LILVLLPGASS	SDCDIDGKSDK	VFGNILMVSFNA	LDSMRDIC	SNCQQNASNI	FKKNSCDDN	K <mark>EVKFLYRAVRKI</mark>	LKQC :	90
IL7 T3	MFHVSFRYIFGIPP	LILVLLPGASS	SDCDIDGKSDK	(VFGNILMVSFNA	LDSMRDIC	SNCQQNASNI	FKKNSCDDN	K <mark>EVKFLYRAVRKI</mark>	LKQC :	90
AFA42957.1	MFHVSFRYIFGIPP	LILVLLPGASS	SDCDIDGKSDK	VFGNILMVSFNA	AL			-EVKFLYRAVRKI	LKQC :	63
IL7 T4	MFHVSFRYIFGIPP	LILVLLPGASS	SDCDIDGKSDK	(VFGNILMVSFNA	L			-EVKFLYRAVRKI	LKQC :	63
	MFHVSFRYIFGIPP	LILVLLPGASS	SDCDIDGKSDK	VFGNILMVSFNA	\L			EVKFLYRAVRKI	LKQC	
	100	×	120	*	140	*	160	*		
AFA 42954 .1	100 NKTNNSEEFNDQAE	* RISKTTLILLI	120 NCTSK <mark>VKERKE</mark>	* PTLHKVQPTKTI	140 Eekklike	* QKKQDDSPCI	160 FVKRLLDEIK	* ICWNKILRGAKKI	: 17	7
AFA42954.1 IL7 T1	100 NKTNNSEEFNDQAE NKTNNSEEFNDQAE	* RISKTTLILLM RISKTTLILLM	120 NCTSK <mark>VKERKE</mark> NCTSK <mark>VKERKE</mark>	* PTLHKVQPTKTI PTLHKVQPTKTI	140 EEKKLLKE EEKKLLKE	* QKKQDDSPCI QKKQDDSPCI	160 FVKRLLDEIK FVKRLLDEIK	* ICWNKILRGAKKI ICWNKILRGAKKI	H : 17 H : 17	7 7
AFA42954.1 IL7_T1 AFA42955.1	100 NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE	* RISKTTLILL RISKTTLILL RISKTTLILL	120 NCTSK <mark>VKERKE</mark> NCTSKVKERKE NCTSKVKERKE	* PTLHKVQPTKTI PTLHKVQPTKTI PTLHKVQPTKTI	140 EEKKLLKE EEKKLLKE EEKKLLKE	* QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI	160 TVKRLLDEIK TVKRLLDEIK	* ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI	H : 17 H : 17 H : 15	7 7 0
AFA42954.1 IL7_T1 AFA42955.1 IL7_T2	100 NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE	* RISKTTLILL RISKTTLILL RISKTTLILL RISKTTLILL	120 NCTSK <mark>VKERKE</mark> NCTSK <mark>VKERKE</mark> NCTSKVKERKE NCTSKVKERKE	* PTLHKVQPTKTI PTLHKVQPTKTI PTLHKVQPTKTI PTLHKVQPTKTI	140 EEKKLLKE EEKKLLKE EEKKLLKE EEKKLLKE	* QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI	160 VKRLLDEIK VKRLLDEIK VKRLLDEIK	* ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI	H : 17' H : 17' H : 15 H : 15	7 7 0
AFA42954.1 IL7_T1 AFA42955.1 IL7_T2 AFA42956.1	100 NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE	* RISKTTLILL RISKTTLILL RISKTTLILL RISKTTLILL RISKTTLILL	120 NCTSK <mark>VKERKE</mark> NCTSKVKERKE NCTSKVKERKE NCTSKVKERKE NCTSK	* PTLHKVQPTKTI PTLHKVQPTKTI PTLHKVQPTKTI PTLHKVQPTKTI	140 EEKKLLKE EEKKLLKE EEKKLLKE EEKKLLKE	* QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI	160 EVKRLLDEIK EVKRLLDEIK EVKRLLDEIK EVKRLLDEIK	* ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI	H : 17 H : 17 H : 15 H : 15 H : 15 H : 15	7 7 0 9
AFA42954.1 IL7_T1 AFA42955.1 IL7_T2 AFA42956.1 IL7_T3	100 NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE	* RISKTTLILL RISKTTLILL RISKTTLILL RISKTTLILL RISKTTLILL	120 NCTSKVKERKE NCTSKVKERKE NCTSKVKERKE NCTSK NCTSK	* PTLHKVQPTKTI PTLHKVQPTKTI PTLHKVQPTKTI PTLHKVQPTKTI	140 EEKKLLKE EEKKLLKE EEKKLLKE EEKKLLKE EEKKLLKE	* QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI	160 EVKRLLDEIK EVKRLLDEIK EVKRLLDEIK EVKRLLDEIK EVKRLLDEIK	* ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI	H : 17 H : 17 H : 15 H : 15 H : 15 H : 15 H : 15	7 7 0 9 9
AFA42954.1 IL7_T1 AFA42955.1 IL7_T2 AFA42956.1 IL7_T3 AFA42957.1	100 NKTNNSEE FNDQAE NKTNNSEE FNDQAE NKTNNSEE FNDQAE NKTNNSEE FNDQAE NKTNNSEE FNDQAE NKTNNSEE FNDQAE	* RISKTTLILL RISKTTLILL RISKTTLILL RISKTTLILL RISKTTLILL RISKTTLILL	120 NCTSKVKERKE NCTSKVKERKE NCTSKVKERKE NCTSK NCTSK NCTSK	* PTLHKVQPTKTI PTLHKVQPTKTI PTLHKVQPTKTI	140 EEKKLLKE EEKKLLKE EEKKLLKE EEKKLLKE EEKKLLKE EEKKLLKE	* QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI	160 EVKRLLDEIK EVKRLLDEIK EVKRLLDEIK EVKRLLDEIK EVKRLLDEIK EVKRLLDEIK	* ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI	H : 17' H : 17' H : 15 H : 15 H : 15 H : 15 H : 15 H : 13	7 7 0 9 9
AFA42954.1 IL7_T1 AFA42955.1 IL7_T2 AFA42956.1 IL7_T3 AFA42957.1 IL7_T4	100 NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE NKTNNSEEFNDQAE	* RISKTTLILL RISKTTLILL RISKTTLILL RISKTTLILL RISKTTLILL RISKTTLILL RISKTTLILL	120 NCTSKVKERKE NCTSKVKERKE NCTSKVKERKE NCTSK NCTSK NCTSK	* PTLHKVQPTKTI PTLHKVQPTKTI PTLHKVQPTKTI	140 EEKKLLKE EEKKLLKE EEKKLLKE EEKKLLKE EEKKLLKE EEKKLLKE EEKKLLKE	* QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI QKKQDDSPCI	160 FVKRLLDEIK FVKRLLDEIK FVKRLLDEIK FVKRLLDEIK FVKRLLDEIK FVKRLLDEIK	* ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI ICWNKILRGAKKI	H : 17' H : 17' H : 15 H : 15 H : 15 H : 15 H : 13 H : 13	7 7 0 9 9 2 2

Figure S1. Protein sequence alignment of the tree shrew IL7. The red sequence IDs indicate sequences obtained by molecular cloning and deposited in GenBank in our previous study (Yu et al., 2014), and the blue sequence IDs indicate sequences obtained by using the TS_3.0 genome annotation.

Figure S2. Biological process enrichment of testis-specific genes

Figure S3. Protein sequence alignment of tree shrew *IL6* **gene family.** The longest protein sequence for each gene family member was chosen for the alignment.

Figure S4. Protein sequence alignment of tree shrew *STT3B* **gene family.** The longest protein sequence for each gene family member was chosen for the alignment.

Figure S5. Gene structure and phylogenetic relationship among tree shrew *IL6* gene family members. (*left*) The maximum likelihood tree was constructed using MEGA7, with the ML methods (K2+G model) and 1,000 bootstraps. (*right*) Gene structure based on the TS_3.0 genome annotation. CDS, coding sequence; UTR, untranslated region.

Figure S6. Gene structure and phylogenetic relationship among tree shrew *STT3B* **family members.** (*left*) The maximum likelihood tree was constructed using MEGA7, with the ML methods (K2+G model) and 1,000 bootstraps. (*right*) Gene structure based on the TS_3.0 genome annotation. CDS, coding sequence; UTR, untranslated region.

Library	Description	No. of		Sou	Accession number	No. of	Reference
type		datasets	rce			datasets after	
						QC	
Poly(A) ⁺	Pancreatic cancer tissues	3		GE	PRJNA434450	3	(Tu et al.,
			0				2019)
$Poly(A)^+$	Tree shrew adipose	12		GE	PRJNA310673	12	(Han et al.,
	tissues		0				2020)
$Poly(A)^+$	Tree shrew liver tissues	2		GE	PRJNA282350	2	(Wu et al.,
			0				2016)
$Poly(A)^+$	Tree shrew PBMC	6		GE	PRJNA473782	6	-
			0				
$Poly(A)^+$	Tree shrew brain	6		GE	PRJNA416241	6	(Fan et al.,
	RNA-seq		0				2018)
$Poly(A)^+$	Tree shrew multi organ	7		GE	PRJNA170104	7	(Fan et al.,
	RNA-seq		Ο				2013)

Table S1. Information of publicly available tree shrew RNA-seq datasets

$Poly(A)^+$	Tree shrew immortalized	21	GS	PRJCA002538	21	(Zhang et al.,
	hepatocytes cell lines		А			2020)
$Poly(A)^+$	Tree shrew hepatocytes	7	GE	PRJNA87013	7	(Yan et al.,
	RNA-seq		0			2012)
$Poly(A)^+$	differentiating germ cell	10	TS	TSDB2017R01-	6	(Li et al.,
	and cell line		DB	TSDB2017R15		2017)
$Poly(A)^+$	Mixed tissues	1	GE	PRJNA200450	1	(Lin et al.,
			0			2014)
$Poly(A)^+$ &	HBV infected tree shrew	21	DD	DRR155071-DRR1550	21	(Sanada et
Ribo ⁻	liver		BJ	99		al., 2019)
$Poly(A)^+$	Tree shrew glioblastoma	5	GS	PRJCA000125	5	(Tong et al.,
			А			2017)

Poly(A)⁺, poly A enriched library construction; Ribo⁻, ribosome depletion library construction. PBMC, peripheral blood mononuclear cell; HBV, hepatitis B virus; GEO, gene expression omnibus (https://www.ncbi.nlm.nih.gov/geo/); GSA, genome sequence archive (https://ngdc.cncb.ac.cn/gsa/); TSDB, tree shrew database (http://www.treeshrewdb.org/); DDBJ, DNA Data Bank of Japan (https://www.ddbj.nig.ac.jp/index-e.html).

	ID	Gende	Ασ	Tissues	Sequencing	No
	r	Gende	e	1155465	strategy	of
	1		(months		strategy	. 01 datasets
			(montins			uatasets
	27d	female	21	Brain.	RNA-seg &	9
2				Cortex.	ISO-sea (pooled	-
2				Hippocampus	samples)	
				, Heart, Liver,		
				Spleen,		
				Kidney,		
				Small		
				intestine,		
				Ovary		
	U23	male	29	Testis	RNA-seq	1
	U22	female	17	Brain,	RNA-seq &	11
				Cortex,	ISO-seq (pooled	
				Hippocampus	samples)	
				, Heart, Liver,		
				Spleen, Lung,		
				Kidney,		
				Small		
				intestine,		
				Muscle,		
				Ovary		
	16c	male	32	Brain,	RNA-seq	11
7				Cortex,		

Table S2. Sample information for different tree shrew transcriptome datasets

				Hippocampus		
				, Heart, Liver,		
				Spleen, Lung,		
				Kidney,		
				Small		
				intestine,		
				Muscle,		
				Testis		
	16c	male	28	Brain,	RNA-seq	11
9				Cortex,		
				Hippocampus		
				, Heart, Liver,		
				Spleen, Lung,		
				Kidney,		
				Small		
				intestine,		
				Muscle,		
				Testis		
	21	male	67	Liver	Ribo ⁻ RNA-seq	1
	28a	male	63	Liver	Ribo ⁻ RNA-seq	1
4						
	U31	male	6	Liver	Ribo ⁻ RNA-seq	1
	U32	male	7	Liver	Ribo ⁻ RNA-seq	1

ISO-seq, long-read isoform sequencing; Ribo⁻, ribosome depletion RNA-SEQ library construction.

	Libra	Descripti	No. of	Experiment design
ry ty	/pe	on	datasets	
	Poly(HCV	18	HCV infected and uninfected (NC)
$A)^+$		infected TPH		samples were collected at 24, 48, and 72
				hours post infection
	Poly(NDV	18	NDV infected and uninfected (NC)
$A)^+$		infected		samples were collected at 3, 9, and 12 hours
		TSPRC		post infection
	Poly(EMCV	9	EMCV infected and uninfected (NC)
$A)^+$		infected		samples were collected at 3, 9, and 12 hours
		TSPRC		post infection
	Poly(HSV-1	8	HSV-1 infected and uninfected (NC)
$A)^+$		infected		samples was collected at 6 and 12 hours post
		TSPRC		infection
	Poly(SeV	9	SeV infected and uninfected (NC)
$A)^+$		infected		samples were collected at 3, 9, and 12 hours
		TSPRC		post infection
	Ribo	IAV	24	Sample were collected at 0, 3, and 5
-		infected lung		days post IAV infection

Table S3. Information of RNA-seq datasets of virus-infected cells and tissues

Poly(A)⁺, poly A enriched library construction; Ribo⁻, ribosome depletion library construction.

TSPRC, tree shrew primary renal cells. TPH, Tree shrew primary hepatocytes.

HCV, Hepatitis C virus; NDV, Newcastle disease virus; EMCV,

Encephalomyocarditis virus; HSV-1, herpes simplex virus type 1; SeV, Sendai virus; IAV, influenza A virus.

Gene	GenBank	Reference
	accession number	
GBP1	AG214685.1	
GBP2	AG214686.1	(Cu at al
GBP4	AG214687.1	(Gu et al.,
GBP5	AG214688.1	2019)
GBP7	AG214689.1	
IL7 (variant 1)	AFA42954.1	
IL7 (variant 2)	AFA42955.1	
IL7 (variant 3)	AFA42956.1	(Yu et al.,
IL7 (variant 4)	AFA42957.1	2014)
IL7 (variant 5)	AFA42958.1	
IL7 (variant 6)	AFA42959.1	
TLRI	GT354316.1	
TLR2	GT354317.1	
TLR3	GT354318.1	
TLR4	GT354319.1	
TLR5	GT354320.1	(Yu et al.,
TLR6	GT354321.1	2016)
TLR7	GT354322.1	
TLR8	GT354323.1	
TLR9	GT354324.1	
TLR11	GT354325.1	
TLR12	GT354326.1	
OASI	MH512001	
OAS2	MH512002	(Yao et
OASL1	MH512003	al., 2019)
OASL2	MH512004	

Table S4. Sequences obtained by molecular cloning

APOBEC3_A3A	KU053484.1	
APOBEC3_A3C	KU053485.2	(Luo et
APOBEC3_A3F	KU053486.3	al., 2018)
APOBEC3_A3G	KU053487.4	

GBP, guanylate binding protein; *IL7*, interleukin 7; *TLR*, toll like receptor; *OAS*, 2'-5'-oligoadenylate synthetase; *OASL*, 2'-5'-Oligoadenylate synthetase like; *APOBEC3*, apolipoprotein b mRNA editing enzyme catalytic subunit 3.

Spacios	Genome	Wahlink			
Species	version	weblink			
Homo ganiong	GRCh38.	https://asia.ensembl.org/Homo_sapiens/I			
110mo supiens	p13	nfo/Index			
Pan	Pan_tro_3	https://asia.ensembl.org/Pan_troglodytes/			
troglodytes	.0	Info/Index			
Gorilla gorilla	a a rC a rA	https://asia.ensembl.org/Gorilla_gorilla/I			
gorilla	gorGor4	nfo/Index			
Macaca	Manul 10	https://asia.ensembl.org/Macaca_mulatta			
mulatta	winnui_10	/Info/Index			
Rattus	Duon 60	https://asia.ensembl.org/Rattus_norvegic			
norvegicus	KIIOF_0.0	us/Info/Index			
Muserusoulus	$CDCm^{20}$	https://asia.ensembl.org/Mus_musculus/I			
mus musculus	GKCIII39	nfo/Index			
Sug govofa	Sscrofa11	https://asia.ensembl.org/Sus_scrofa/Info/			
sus scroja	.1	Index?db=core			
Dog taumig	ARS-UC	https://asia.ensembl.org/Bos_taurus/Info/			
Bos laurus	D1.2	Index			
Canis lupus	CamFam3	https://asia.ensembl.org/Canis_lupus_fa			
familiaris	.1	miliaris/Info/Index			
Oryctolagus	OryCun2.	https://asia.ensembl.org/Oryctolagus_cu			
cuniculus	0	niculus/Info/Index			

Table S5. Genome information of 11 vertebrate species used in this study

		1	8 2			
	Complete	Complete and single-copy	Complete and duplicated	Fragmented	Missing	
Version	BUSCOs	BUSCOs	BUSCOs	BUSCOs	BUSCOs	
Eukaryota	a BUSCOs					
TS_1.0	221	210	11	20	14	
TS_2.0	235	228	7	8	12	
TS_3.0	250	236	14	4	1	
Tupchi_						
1.0	216	207	9	16	23	
TupaiaB						
ase	195	187	8	30	30	
Human	253	246	7	1	1	
Mouse	250	244	6	2	3	
mammalia	an BUSCOs					
TS_1.0	7568	7484	84	666	992	
TS_2.0	7519	7457	62	332	1375	
TS 3.0	8559	8250	177	304	363	

Table S6. Assessment of annotation completeness in Chinese tree shrew using *Eukaryota* BUSCOs and *mammalian* BUSCOs

Tupchi

1.0	7884	7814	70	453	889
Tupa	aB				
ase	6080	6023	57	640	2506
Hum	an 8931	8810	121	31	264
Mou	e 8916	8839	77	18	292

BUSCO: Benchmarking with Universal Single-Copy Orthologs (Seppey et al., 2019; Simão et al., 2015; Waterhouse et al., 2018). A total of 255 benchmarking universal single-copy orthologs of the *Eukaryota* dataset were retrieved from BUSCO. The three versions of tree shrew genome annotation were established by our group: TS_1.0 (Fan et al., 2013), TS_2.0 (Fan et al., 2019), and TS_3.0 (current version of tree shrew annotation). Tupchi_1.0, NCBI version of tree shrew annotation (https://www.ncbi.nlm.nih.gov/assembly/GCF_000334495.1/). The TupaiaBase was established by (Sanada et al., 2019). Human (https://asia.ensembl.org/Homo_sapiens/Info/Index) and Mouse (https://asia.ensembl.org/Mus_musculus/Info/Index/) datasets were taken from the public sources.

		Chimpa	Catt	Do	Gor	Hu	Rhesus	Mo	Dia	Rab	Dot	Tree
		nzee	le	g	illa	man	monkey	use	Fig	bit	Kat	shrew
	Chimpanz		19	19	22	20	20.270	19	20	19	19	10.2(9
ee		-	574	597	487	380	20 3 70	930	034	098	656	19 268
	0.41	14267		17	17	17	16 615	18	18	17	17	17 201
	Cattle	14 367	-	658	541	835	16 615	014	246	129	717	17201
	D	14 222	15		17	17	16 505	17	17	16	17	17.000
	Dog	14 323	187	-	385	568	16 595	689	749	879	413	1/009
	C	17 545	14	14		19	10 (0)	19	19	18	19	10 (0(
	Gorilla	17 545	445	430	-	583	19 696	417	545	646	142	18 696
	11	16 616	15	15	16		17 7(1	18	17	17	17	17.000
	Human	16 616	313	286	580	-	1//61	291	981	008	791	17 299
	Rhesus	15.250	13	13	15	15		17	18	17	17	17 425
moi	nkey	15 359	991	952	395	366	-	961	139	347	744	1/435
	Maaaaa	14 (40	15	15	14	15	14 175		18	17	20	17 726
	Mouse	14 649	377	199	729	746	14 1/5	-	401	552	047	1//36

Table S7. Number of orthologs among 11 species

Tree	13 791	14	14	13	14	13 390	14	13	13	14	-
Kat	14 147	862	665	171	055	13 703	579	445	758	-	17 050
Pat	1/1 1/10	14	14	14	15	13 705	16	14	13		17 650
Kaddii	13 14/	985	851	234	061	12 887	245	502	-	820	10 333
D-1-1-1-4	12 147	13	13	13	14	12 997	14	13		16	16 222
Pig	14 198	916	695	296	085	13 832	941	-	818	105	19 570
Pig	14 100	14	14	14	15	13 832	14		19	20	10.570

Below the diagonal, number of one-one orthologue between each species pair; above the diagonal, number of total orthologues between each species pair (one-one, one-many, many-one). The data sources for Chimpanzee (*Pan troglodytes*), Cattle (*Bos taurus*), Dog (*Canis lupus familiaris*), Gorilla (*Gorilla gorilla gorilla*), Human (*Homo sapiens*), Rhesus monkey (*Macaca mulatta*), Mouse (*Mus musculus*), Pig (*Sus scrofa*), Rabbit (*Oryctolagus cuniculus*), and Rat (*Rattus norvegicus*) are listed in Table S5. The Chinese tree shrew (*Tupaia belangeri chinensis*) data are generated in this study.

	Nodos	Expansion	Gene	Equal	Contraction	Gene	Sig	Sig	
	noues	S	gain	Equal S		loss	Exp	Contra	
	<11>	582	911	20746	866	1011	86	15	
	Pan troglodytes <6>	1591	2978	19996	607	657	329	27	
	Oryctolagus cuniculus <20>	866	1906	14980	6348	6537	53	13	
	Bos taurus <0>	679	1397	19613	1902	2072	51	16	
	Macaca mulatta <12>	1113	2179	17956	3125	3192	129	19	
	Gorilla gorilla gorilla <10>	1408	2518	19612	1174	1235	255	30	
	<3>	46	52	18533	3615	3632	3	7	
	<1>	205	323	21609	380	398	32	5	
	<13>	69	87	21180	945	958	4	8	
	Tupaia belangeri chinensis	1710	5015	1 (207	1077	4550	120	22	
<14	>	1610	5217	16307	4277	4553	120	22	
	<17>	468	1140	17649	4077	4216	104	20	
	Homo sapiens <8>	527	920	19065	2602	3094	76	260	
	<7>	137	217	21514	543	587	28	29	

Table S8. Gene family size changes along the phylogenic tree of 11 mammal species

Sus scrofa <2>	1990	4951	19435	769	871	215	7
<19>	26	34	22146	22	24	6	1
<15>	0	0	21574	620	620	0	0
Canis lupus familiaris <4>	779	1316	19088	2327	2576	20	17
Mus musculus <18>	650	2088	21037	507	628	122	35
<9>	563	703	21285	346	368	65	9
Rat<16>	924	1842	20486	784	908	105	41

Expansions, equal, and contractions: Total number of gene families that experienced expansions, equal and contraction along each branch of the phylogenic tree of the 11 vertebrate species described in the main text, respectively. Gene gain and gene loss, number of genes that gained or lost along each branch of the species tree. Sig Exp: number of gene families that undergone significantly expansion. Sig contra: number of gene families that undergone significantly contraction.

	Orthogro	Co	Ren ID	Orthog	ro Cou	Ren ID	Orthogr	Cou	Ren ID
ups		unt	Kep ID	ups	nt	Kep ID	oups	nt	Kep ID
1	OG000000	-20	IGHV3-35	OG00003	17 6	RPL7A	OG00016 67	15	NSA2
2	OG000000	-12	IGKV3-11	OG00004 0	46 7	MORF4L1	OG00001 07	16	RPS6
8	OG000000	-11	H2BC4	OG0000* 2	78 7	RPL18	OG00008 01	16	RPL23A
2	OG000001	-8	IGKV2-28	OG0016′ 2	79 7	GOLGA2	OG00009 04	16	NPMI
3	OG000001	-7	OR4F3	OG00138 4	86 7	GAPDH	OG00004 41	16	PUM3
7	OG000002	-7	H4	OG00000	09 7	SETMAR	OG00013 00	17	MIA3
6	OG000004	-6	IFNA14	OG00172 9	24 7	CBX3	OG00001 02	18	RPS3A

 Table S9. Tree shrew gene families that undergone significant size changes

	Orthogro	Co	Ren ID		Orthogro	Cou	Ren ID		Orthogr		Cou	Ren ID
ups	\$	unt	Kep ID	ups		nt	Kep ID	ouj	ps	nt		
	OG000003	(CVD2C10		OG000013	7			OG00013		10	00117
7		-0	CIF2CI9	5		/	HMGN1	01			18	KPL1/
	OG000004	F	N1		OG000069	7			OG00011		10	EMU
5		-5	Novel gene	6		/	nsr 90Ad3r	70			19	ENV
	OG000002	F			OG000051	7			OG00000		10	OD4C6
9		-3	РСДНВІ	8		/	UBE2L3	71			19	OR4C0
	OG000009	e	001042		OG001724	7	<i>C</i> 1 <i>C</i>		OG00010		20	ורוחת
4		-3	ORT0A2	8		/	GAG	45			20	RPL21
	OG000006	~			OG001681	0			OG00002		21	
6		-5	UG12B31	4		8	KBIBD/	02			21	KPNA2
	OG000002	-	0.0.5.0.10		OG000027	0			OG00000			
8		-5	OR5B12	6		8	BINIAI	54			21	EIF4A2
	OG000006	_			OG000047	2			OG00000		•	
4		-5	OR4C12	6		8	HSPD1	18			21	HNRNPAI
	OG000002	-5	IGHV1-24		OG001681	8	HMGB2		OG00004		23	LORF2

	Orthogro	Co	Ren ID	(Orthogro	Cou	Ren ID	0	rthogr	Cou	Ren ID
ups	i	unt	кер ID	ups	n	t	Kep ID	oups	n	ıt	Kep ID
0				2				24			
	OG000008	-		0	G001681	0		00	G00004	25	
0		-5	CYP4F11	3		8	RPSA	91		25	ENV
	OG000009			0	G000033			00	300006		
9		-4	RPL39L	0		9	KRT18	06		25	TXNRD1
	OG000006			0	G001608			00	G00005		
7		-4	USPL12	0		9	TSORF	53		26	RALGDS
	OG000008			0	G000030			00	600000		
2		-4	PCDHA1	6		9	JAM3	30		39	RPL31
	OG000001			0	G000347			00	600004		EEF1A1P
9		-4	CEACAMI	5		9	KRT8	25		28	5
	OG000011			0	G000000			OC	3 00000		
8		-4	ZNF607	9		9	HLA-E	26		29	HVM45
	OG000004			0	G000001			OC	600001		
1		-5	GBP1	1		9	IGLV2-8	21		30	NSA2

	Orthogro	Co	Ren ID	Ortl	hogro Co	u Ren ID	(Orthogr C	0U Ren ID
ups	1	unt	Кер пл	ups	nt	Kep ID	oups	nt	Kep ID
2	OG000381	3	HMGN2	OG00	01387 10	ANKRD26	C 70	DG00003 30	HMGB1
1	OG001792	3	ST13	OG00 5	00036 10	LDHB	C 16	DG00000 30	EEF1A1
1	OG001751	3	OR2I1P	OG00 2	01387 10	GAG	C 96	DG00001 31	RPL21
2	OG000089	3	DMD	OG00 3	00563 10	RPS3A	43	DG00001 31	DNAJA1
6	OG000126	3	LARP7	OG00	01387 10	TSORF	C 49	DG00000 32	HMGN2
0	OG000289	3	RPS23	OG00 8	00064	MORF4L2	42	DG00003 33	HMGB1
8	OG000040	4	RPL37A	OG00	00375	POL	22	0G00002 35	GAG-PRO -POL
	OG000289	4	LORF2	OG00	00115 11	VMN2R116	C)G00000 36	HMGB1

	Orthogro	Co	Ren ID	Ortho	gro Cou	Ren ID	Orthogr	Cou	Ron ID
ups	ŝ	unt	кер ID	ups	nt	Ktp ID	oups	nt	Kep ID
6				5			83		
	OG001626	4	TOODE	OG000	025		OG00002	20	
3		4	ISORF	2	11	BINIAI	53	38	RPL21
	OG000063			OG000:	564		OG00000		
7		4	NLRP1	6	11	RPS3A	32	39	RPL21
	OG000096			OG000	020		OG00000		
3		4	ATP5F1C	1	11	HSP90AB1	92	43	RPL5
	OG000029			OG0000	016		OG00001		
3		4	ZNF705A	3	11	RPS4X	14	46	POL
	OG000070			OG000.	375		OG00000		
9		4	POL	9	12	IL6	05	47	OR5B3
	OG000061			OG000	194		OG00001		
0		4	EEF1A1	5	12	POL	52	38	STT3B
	OG000050			- OG000	060		OG00001		
8		4	RPL7L1	1	12	CACYBP	46	51	LORF2
0				*					

	Orthogro	Co	Ren ID	Or	thogro	Cou	Ren ID		Orthogr	Cou	Ron ID
ups	ŝ	unt	Кри	ups	nt		Kep ID	ouj	DS	nt	Kep ID
6	OG000015	5	RPL17	OG 8	000375	12	RPS3A	59	OG00000	65	NCL
3	OG000017	5	NUTM2G	OG 0	000005	13	HSPA1L	57	OG00000	76	LORF2
5	OG000027	5	GCSH	OG 1	000014	13	HNRNPC	21	OG00000	84	ZNF589
2	OG000069	5	MRPL42	OG 9	000289	13	ENV	43	OG00000	86	LINI
1	OG000091	5	IGLV1-40	OG 3	000041	14	SSB	24	OG00000	129	LORF2
4	OG001691	5	SLAMF6	OG4 7	000007	14	RPS2	22	OG00000	138	LIREI
8	OG000027	5	IGHV2-5	OG4	000009	14	VPREBI	14	OG00000	154	CASR
	OG000012	6	RPL36	OG	000147	15	ENV		OG00000	158	RPL7

	Orthogro	Co	Ron ID	Ortho	ogro Cou	Rep ID	Orthog	gr Cou	Pon ID
ups	1	unt	Kep ID	ups	nt	Кер пл	oups	nt	кери
9				3			04		
4	OG000029	6	RPS20	OG000 8	194	RNF167	OG0000 07	0 180	LIRE1
3	OG001724	6	RPL9	OG000 7	194	GAG	-	-	-
0	OG000092	6	MICB	OG000 4	15	RPL9	-	-	-

Orthogroups: Group of orthologs among species that were highly identical. The orthogroups were identified by OrthoFinder software (Emms & Kelly, 2019). Count: number of gene family member that undergone changes; minus means number of genes that contracted in a gene family.

Rep ID: the gene symbols that represented the orthogroups. Note that gene Rep ID may represent multiple orthogroups.

REFERENCES

- Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. *Genome Biology*, **20**(1): 238.
- Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, et al. 2013. Genome of the Chinese tree shrew. *Nature Communications*, **4**: 1426.
- Fan Y, Luo RC, Su LY, Xiang Q, Yu DD, Xu L, et al. 2018. Does the genetic feature of the Chinese tree shrew (*Tupaia belangeri chinensis*) support its potential as a viable model for Alzheimer's disease research?. *Journal of Alzheimer's Disease*, 61(3): 1015–1028.
- Fan Y, Ye MS, Zhang JY, Xu L, Yu DD, Gu TL, et al. 2019. Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. *Zoological Research*, 40(6): 506–521.
- Gu TL, Yu DD, Fan Y, Wu Y, Yao YL, Xu L, et al. 2019. Molecular identification and antiviral function of the guanylate-binding protein (*GBP*) genes in the Chinese tree shrew (*Tupaia belangeri chinesis*). Developmental & Comparative Immunology, **96**: 27–36.
- Han YY, Wang WG, Jia J, Sun XM, Kuang DX, Tong PF, et al. 2020. WGCNA analysis of the subcutaneous fat transcriptome in a novel tree shrew model. *Experimental Biology and Medicine*, 245(11): 945–955.
- Li CH, Yan LZ, Ban WZ, Tu Q, Wu Y, Wang L, et al. 2017. Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring. *Cell Research*, **27**(2): 241–252.
- Lin JN, Chen GF, Gu L, Shen YF, Zheng MZ, Zheng WS, et al. 2014. Phylogenetic affinity of tree shrews to Glires is attributed to fast evolution rate. *Molecular Phylogenetics and Evolution*, 71: 193–200.
- Luo MT, Fan Y, Mu D, Yao YG, Zheng YT. 2018. Molecular cloning and characterization of *APOBEC3* family in tree shrew. *Gene*, **646**: 143–152.
- Sanada T, Tsukiyama-Kohara K, Shin IT, Yamamoto N, Kayesh MEH, Yamane D, et al. 2019. Construction of complete *Tupaia belangeri* transcriptome database by whole-genome and comprehensive RNA sequencing. *Scientific Reports*, **9**(1): 12372.
- Seppey M, Manni M, Zdobnov EM. 2019. BUSCO: assessing genome assembly and annotation completeness. *Methods in Molecular Biology*, **1962**: 227–245.
- Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*, **31**(19): 3210–3212.
- Tong YH, Hao JJ, Tu Q, Yu HL, Yan LZ, Li Y, et al. 2017. A tree shrew glioblastoma model recapitulates features of human glioblastoma. *Oncotarget*, **8**(11): 17897–17907.
- Tu Q, Yang D, Zhang XN, Jia XT, An SQ, Yan LZ, et al. 2019. A novel pancreatic cancer model originated from transformation of acinar cells in adult tree shrew, a primate-like animal. *Disease Models & Mechanisms*, 12(4): dmm038703.
- Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et al. 2018. BUSCO applications from quality assessments to gene prediction and phylogenomics.

Molecular Biology and Evolution, 35(3): 543–548.

- Wu XY, Xu HB, Zhang ZG, Chang Q, Liao SS, Zhang LQ, et al. 2016. Transcriptome profiles using next-generation sequencing reveal liver changes in the early stage of diabetes in tree shrew (*Tupaia belangeri chinensis*). *Journal of Diabetes Research*, **2016**: 6238526.
- Yan H, Zhong GC, Xu GW, He WH, Jing ZY, Gao ZC, et al. 2012. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. *eLife*, 1: e00049.
- Yao YL, Yu DD, Xu L, Fan Y, Wu Y, Gu TL, et al. 2019. Molecular characterization of the 2',5'-oligoadenylate synthetase family in the Chinese tree shrew (*Tupaia belangeri chinensis*). *Cytokine*, **114**: 106–114.
- Yu DD, Wu Y, Xu L, Fan Y, Peng L, Xu M, et al. 2016. Identification and characterization of toll-like receptors (TLRs) in the Chinese tree shrew (*Tupaia belangeri chinensis*). Developmental & Comparative Immunology, 60: 127–138.
- Yu DD, Xu L, Liu XH, Fan Y, Lü LB, Yao YG. 2014. Diverse interleukin-7 mRNA transcripts in Chinese tree shrew (*Tupaia belangeri chinensis*). *PLoS One*, **9**(6): e99859.
- Zhang XM, Yu DD, Wu Y, Gu TL, Ma N, Dong SZ, et al. 2020. Establishment and transcriptomic features of an immortalized hepatic cell line of the Chinese tree shrew. *Applied Microbiology and Biotechnology*, **104**(20): 8813–8823.