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ABSTRACT

Unraveling the phylogeographic histories of species
remains a key endeavor for comprehending the
evolutionary processes contributing to the rich biodiversity
and high endemism found in East Asia. In this study, we
explored the phylogeographic patterns and demographic
histories of three endemic fishfly and dobsonfly species
(Neochauliodes formosanus, Protohermes costalis, and
Neoneuromus orientalis) belonging to the holometabolan
order Megaloptera. These species, which share a broad
and largely overlapping distribution, were analyzed using
comprehensive mitogenomic data. Our findings revealed a
consistent influence of vicariance on the population
isolation of Neoc. formosanus and P. costalis between
Hainan, Taiwan, and the East Asian mainland during the
early Pleistocene, potentially hindering subsequent
colonization of the later diverged Neon. orientalis to these
islands. Additionally, we unveiled the dual function of the
major mountain ranges in East Asia, serving both as
barriers and conduits, in shaping the population structure
of all three species. Notably, we demonstrated that these
co-distributed  species originated from Southwest,
Southern, and eastern Central China, respectively, then
subsequently migrated along multi-directional routes,
leading to their sympatric distribution on the East Asian
mainland. Furthermore, our results highlighted the
significance of Pleistocene land bridges along the eastern
coast of East Asia in facilitating the dispersal of mountain-
dwelling insects with low dispersal ability. Overall, this
study provides novel insight into the synergistic impact of
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INTRODUCTION

Understanding the evolutionary history of the fauna and flora
of East Asia is essential for comprehending the development
and future fate of the region’s exceptionally rich and distinctive
biodiversity (Luo et al., 2023). The biogeographical history of
East Asian species is shaped not only by their intrinsic
adaptive capabilities, such as vagility and stress tolerance, but
also by the synergistic interplay of geological and climatic
factors, including Qinghai-Xizang Plateau uplift and associated
orogenic events, cyclic isolation and connection of islands
along the continental eastern edge of East Asia, and
Quaternary glacial cycles (Du et al., 2023; Liu et al., 2023; Wei
etal, 2022; Ye etal., 2016). Unlike the relatively simple
“southern richness to northern purity” pattern of genetic
diversity observed in European and North American species
(Hewitt, 2000), East Asian species exhibit a far more complex
pattern, largely attributed to the mild influence of Pleistocene
glaciation and abundance of glacial refugia in low-mid latitude
areas of East Asia (Fu & Wen, 2023). Thus, geological events
are considered to have had a more substantial role on the
phylogeographic history of East Asian species than
Pleistocene climatic fluctuations (Fu & Wen, 2023; Yan et al.,
2013). Recent phylogeographic studies have uncovered a
variety of novel and distinctive evolutionary patterns among
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the plants and animals in East Asia (Fan et al., 2012; Li et al.,
2018; Qu etal., 2014; Song et al., 2018; Tang et al., 2018;
Zheng et al., 2020). However, a unified understanding of these
patterns and the processes that drive them remains elusive,
necessitating further research and investigation (Fu & Wen,
2023).

Research on the phylogeography of East Asian insects has
significantly lagged behind studies on plants and vertebrate
animals, despite the extraordinary insect diversity of the
region. Over the past two decades, phylogeographic patterns
have been analyzed for various economically significant
insects (Ji etal., 2020), agricultural and forestry pests,
including major invasive species (Du etal., 2021; Ge et al.,
2019; Juric et al., 2017; Ma et al., 2012; Wu et al., 2015), and
neutral native insects (Tsai et al., 2021; Weng et al., 2016; Ye
etal.,, 2018, 2020) from East Asia. A number of key
phylogeographic patterns have been observed among East
Asian native insects: (1) Hainan population differentiation,
likely driven by isolation of the Qiongzhou Strait (Zhao et al.,
2014); (2) Taiwan population differentiation, likely due to the
isolation of the Taiwan Strait (Du et al., 2019; Kiyoshi, 2008;
Zhu etal., 2016b); (3) Chinese and Japanese genetic
exchange and differentiation, influenced by the periodic
emergence and submersion of the East China Sea Land
Bridge during Quaternary glaciation (Du et al., 2019; Zhang
etal., 2016); (4) Korean Peninsula-Japan population
differentiation, possibly resulting from the formation of the
Korea/Tsushima Strait (Tojo & ltoh, 2015); (5) South-North
population differentiation in mainland East Asia, possibly
caused by varying climatic conditions and the barrier of the
Qinling Mountains (Liu et al., 2023; Ye et al., 2020); and (6)
Population differentiation in Hengduan Mountains and
surrounding areas, likely driven by geographical isolation
related to the uplift of the Qinghai-Xizang Plateau (Lin et al.,
2022; Liu etal., 2023). Despite these advances, many
important insect taxa remain unexplored in the context of East
Asian phylogeography. Considering the complex interactions
between geological and climatic factors in this region, there is
an urgent need for additional studies, especially on the diverse
native insect species.

The holometabolous insect order Megaloptera, which
includes fishflies, dobsonflies, and alderflies, represents a
group with significant biogeographical value due to its
exclusive aquatic larval lifestyle, ancient origin, evolutionary
stasis, low vagility, and disjunctive global distribution. The
megalopteran fauna of East Asia exhibits an extraordinarily
rich diversity, comprising over 200 species, nearly half of the
global total for the order (Martins etal., 2022). Previous
research into the historical biogeography of Megaloptera has
revealed an in situ origin for the Asian Corydalidae
(dobsonflies and fishflies) but a Gondwanan origin for the
Asian Sialidae (alderflies), with both lineages emerging during
the Cretaceous (Jiang et al., 2022). Despite the Cretaceous
origin of the Asian Megaloptera, significant species
diversification occurred during the Miocene, fostering the
evolution of distinct endemic corydalid genera, such as
Neoneuromus and Parachauliodes (Jiang et al., 2021; Yang
etal., 2018). Moreover, major geological events since the
Miocene, including uplift of the Himalayas and associated
mountain ranges in southwestern East Asia, as well as the
formation of the Japanese archipelago, Ryukyu, and Taiwan,
have been identified as catalysts for speciation within the East
Asian corydalids (Jiang etal., 2021; Yang etal., 2018).

1132  www.zoores.ac.cn

However, the impact of these events on the phylogeographic
history and current distribution of specific Megaloptera species
in East Asian remains inadequately explored. The sole study
investigating the population genetics and evolutionary history
of East Asian Megaloptera, specifically Neoneuromus ignobilis
Navas, 1932, found that early vicariant events in the mountain
regions of Indochina and Southwest China, followed by
population expansions from South to Central and East China
during the last interglacial period, likely facilitated the
differentiation and broad distribution of this species (Lin et al.,
2022).

Several other corydalid species in East Asia exhibit broad
distributions similar to that of Neon. ignobilis. Among these,
three species, namely Neochauliodes formosanus (Okamoto,
1910) (Corydalidae: Chauliodinae), Protohermes costalis
(Walker, 1853) (Corydalidae: Corydalinae), and Neon.
orientalis Liu & Yang, 2004 (Corydalidae: Corydalinae), show
considerable overlapping distribution, often being collected
from the same localities (Martins et al., 2022; Yang & Liu,
2010; Yang et al., 2018). Despite this sympatric distribution,
each species exhibits some variation in its distribution
boundary. Neochauliodes formosanus shows the broadest
range, spanning all major regions of the southern Chinese
mainland (Central, East, South, Southwest China), extending
to northern Vietnam and many insular regions, such as
Hainan, Taiwan, Tsushima Island, and Korean Peninsula.
Protohermes costalis is endemic to China, with a range
extending from the southern mainland to Taiwan, but notably
absent from Hainan Island. Neoneuromus orientalis is
restricted to the Chinese Mainland and northern Vietnam, with
no insular occurrences. Notably, two lineages with distinct
phenotypic and genetic divergence exist within Neon.
orientalis, although here we consider them conspecific due to
shared genital characteristics, sister-group relationship, and
allopatric distribution. Despite the extensive distribution of
these species, knowledge about their biology and ecology
remains limited (Hayashi, 1989a, 1989b). In general, the
larvae of Neoc. formosanus are equipped with a pair of
respiratory tubes on the eighth abdominal segment, allowing
them to utilize atmospheric oxygen. In contrast, the larvae of
P. costalis and Neon. orientalis lack these respiratory tubes,
relying more on dissolved oxygen in water. Consequently,
Neoc. formosanus larvae may exhibit a greater adaptability to
a range of freshwater habitats compared to dobsonfly larvae.
Nevertheless, these three species are sometimes found co-
occurring in the same stream, inhabiting similar environments
without significant variation. The altitude of their habitats
typically ranges from 100 to 1 500 m, based on the collection
data from examined samples.

In the current study, we conducted a comparative
phylogeographic analysis of three corydalid species, Neoc.
formosanus, P. costalis, and Neon. orientalis, using
mitochondrial genome (mitogenome) data. We aimed to: (1)
determine whether these three sympatric species share a
consistent phylogeographic history; (2) elucidate the origins of
insular populations of Neoc. formosanus and P. costalis and
explore the factors contributing to the absence of Neon.
orientalis from these islands; and (3) identify the key factors
driving the phylogeographic history of these megalopteran
species. Overall, this study aims to provide novel insights into
the evolutionary history of East Asian insects from a
biogeographical perspective, shedding light on the roles that
mountains and islands in East Asia have played in shaping
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species distribution patterns.
MATERIALS AND METHODS

Sampling and sequencing

A comprehensive sampling effort was conducted for Neoc.
formosanus, involving 147 specimens collected from 52
localities, spanning most of its known distribution range
(Supplementary Table S1). Of these, eight specimens were
dried, while all remaining specimens were preserved in 100%
ethanol and stored at —20°C. For P. costalis, 195 specimens
were sampled from 37 localities in southern China
(Supplementary Table S1). Similarly, 212 specimens of Neon.
orientalis were sampled from 29 localities in southern China
and northern Vietnam (Supplementary Table S1). All voucher
specimens were deposited in the Entomological Museum of
China Agricultural University (CAU) in Beijing. Total genomic
DNA was extracted from the thoracic muscles of each
specimen using a Hipure Universal DNA Kit (Magen, China)
based on the manufacturer’s instructions.

To generate the mitogenomes, each sample was
sequenced on the lllumina NovaSeq platform, producing 4 Gb
of data using a 350 bp paired-end sequencing library. Adapter
sequences from the raw reads were trimmed using
Trimmomatic (Bolger etal., 2014). The Neoc. formosanus
mitogenomes were assembled by referencing the mitogenome
of a closely related species, Neoc. rotundatus Tjeder, 1937
(GenBank accession number: KF771894), using GENEIOUS
PRIME 2020.2.4 (Kearse et al.,, 2012), while the P. costalis
mitogenomes were assembled with the reference sequence of
P. costalis (GenBank accession number: MW642321) and the
Neon. orientalis mitogenomes were assembled in reference to
the mitogenome of Neon. ignobilis (GenBank accession
number: MTO037103). The assembly parameters were
configured with a minimum overlap of 25 bp, minimum overlap
identity of 95%, maximum ambiguities of four, and other
parameters set to default. Genetic distances among all
individuals of the three species were calculated using the CO/
sequence with the Kimura 2 parameter model in MEGA v.5.0
(Tamura et al., 2011) to ensure accurate species identification.

Population genetic diversity and structure
To assess genetic diversity, the number of variable sites (S),
haplotypes (H), haplotype diversity (Hd), and nucleotide
diversity (1) were calculated across the different groups using
the mitogenomic datasets with DNA sequence polymorphism
(DNASP) v.5.0 (Librado & Rozas, 2009). Landscape shape
interpolation analysis was conducted using AIS (Alleles in
Space) software (Miller, 2005) based on the mitogenomic
datasets to visualize the spatial patterns of genetic diversity
(Manel et al., 2003; Storfer et al., 2007). The genetic distances
were interpolated to produce a surface grid (50%x50), with
peaks and troughs reflecting regions of high and low genetic
distance, respectively. Pairwise mean population
differentiation (Fg1) was calculated using ARLEQUIN v.3.11
(Excoffier et al., 2007) based on the mitogenomic datasets.
The phylogenetic relationships among populations of the
three species were reconstructed using maximum-likelihood
(ML) and Bayesian inference (Bl) methods based on the
mitogenomic datasets. Protochauliodes biconicus Kimmins,
1954 (GenBank accession number: KY230493), Chauliodes
pectinicornis (Linnaeus, 1763) (GenBank accession number:
MT232273), Nigronia serricornis (Say, 1824) (GenBank

accession number: MT232274), Parachauliodes asahinai Liu,
Hayashi & Yang, 2008 (GenBank accession number:
MT232265), and Neoc. rotundatus Tjeder, 1937 (GenBank
accession number: OR824237) were selected as outgroup
taxa for phylogenetic inference of the Neoc. formosanus
populations. Sialis hamata Ross, 1937 (GenBank accession
number: FJ859905), Dysmicohermes ingens Chandler, 1954
(GenBank accession number: KJ806318), Nevromus exterior
Navas, 1927 (GenBank accession number: KP126232),
Protohermes concolorus Yang & Yang, 1988 (GenBank
accession  number: MW642276), and  Protohermes
yunnanensis Yang & Yang, 1988 (GenBank accession
number: OR823963) were selected as outgroup taxa for
phylogenetic inference of the P. costalis populations. A similar
set of outgroup taxa was used for phylogenetic inference of
the Neon. orientalis populations, with Neon. similis Liu,
Hayashi & Yang in Yang etal.,, 2018 (GenBank accession
number: MW965198) replacing P. yunnanensis. The ML and
Bl analyses were performed with IQTREE (Nguyen etal.,
2015) and MRBAYES v.3.2.7a implemented in the CIPRES
PORTAL (Miller etal., 2009), respectively. The optimal
partitioning strategy was determined by PARTITIONFINDER
v.2 (Lanfear etal., 2017), with partitions divided by genes.
Nodal support values for ML and BI analyses were estimated
using 1 000 bootstrap replicates and Bayesian posterior
probabilities, respectively.

Bayesian analysis of population structure (BAPS) v.6.0
(Cheng etal, 2013) was employed to assess spatial
clustering of individuals and infer the population genetic
structure for each species using the mitogenomic datasets.
Split networks were generated using SPLITSTREE v.4.13.1
(Huson & Bryant, 2006) and TCS haplotype networks were
constructed using Population Analysis with Reticulate Trees
(POPART) (Leigh & Bryant, 2015) based on mitogenomic
data. To investigate the impact of major East Asian mountains
on gene flow among populations of the three corydalid
species, haplotypes from different mountain populations were
mapped within the haplotype network. Additionally, to visualize
genetic similarities of individuals across space without
biological assumptions, principal component analysis (PCA) of
all samples from each species was performed using
ADEGENET v.2.1.7 in the R package based on mitogenomic
data.

Divergence time estimation

Divergence times among the populations of the three species
were estimated using Bayesian Evolutionary Analysis by
Sampling Trees (BEAST) v.2.0 (Bouckaert etal.,, 2014)
implemented in the CIPRES PORTAL, utilizing the Yule
process model and relaxed log-normal molecular clock
(substitution rate of 0.0115/millions of years (Ma) for
mitogenomes, including 37 genes) (Brower, 1994). Markov
Chain Monte Carlo (MCMC) simulations were run with 300
million generations and sampling every 1 000 generations.
TRACER v.1.7 (Rambaut et al., 2018) was used to determine
stationarity and ensure that the effective sample size (ESS) of
each estimated parameter was greater than 200.
TREEANNOTATOR (in BEAST) was used to summarize the
trees, using the “median height” option, after discarding the
first 25% of samples as burn-in.

Ancestral area reconstruction
Ancestral area reconstruction was performed separately for
each species to elucidate the biogeographic history underlying
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population divergences. For Neoc. formosanus, 11 distinct
regions were delineated based on population genetic structure
and zoogeographical divisions of China (Zhang, 1999): A)
Yunnan, B) South China, C) East of Central China, D)
Southwest China, E) Hainan, F) Taiwan, G) Jiaodong
Peninsula (Shandong, northern China), H) Korean Peninsula,
I) Tsushima lIsland, J) Northern Vietnam, and K) West of
Central China. For P. costalis, five regions were identified: B)
South China, C) East of Central China, D) Southwest China,
F) Taiwan, and K) West of Central China. For Neon. orientalis,
four regions were defined: B) South China, C) East of Central
China, J) Northern Vietnam, and K) West of Central China.
Ancestral area reconstruction was performed using
Reconstruct Ancestral State in Phylogenies (RASP) v.4.2
(build 20200103) (Yu et al., 2015), applying the optimal model
estimated by the BioGeoBEARS package (Matzke, 2013).
Analysis included specific distribution data for each ingroup
taxon, with outgroup taxa removed. The maximum number of
ancestral areas was limited to three for each species to
streamline interpretation and maintain analytical tractability.
Analysis utilized 8 001 post-burn-in trees for Neoc.
formosanus, 7 229 post-burn-in trees for P. costalis, and 5990
post-burn-in trees for Neon. orientalis, all generated from
previous BEAST analyses to account for phylogenetic
uncertainty.

Demographic history

To evaluate evidence of population expansion, Tajima’s D,
Fu’s Fs, and mismatch distribution analyses were performed
using ARLEQUIN v.3.1.1 (Excoffier etal., 2007) and
mitogenomic data. Bayesian skyline plots (BSP) implemented
in BEAST v.2.0 (Bouckaert et al., 2014) were generated to
detect changes in effective population size over time. The
coalescent Bayesian skyline model was selected, with
molecular clock and substitution rates set identically to those
used for divergence time estimations. Stationarity was
confirmed when ESS exceeded 200. Demographic plots were
visualized using TRACER v.1.7 (Rambaut et al., 2018).

Ecological niche modeling

To compare the current suitable distribution ranges of the
three species with their historical ranges, the potential and
suitable distribution areas during the Last Glacial Maximum
(LGM, ca. 0.022 Ma) and Last Interglacial (LIG, ca. 0.12-0.14
Ma) periods were predicted using the MAXENT module
(Phillips & Dudik, 2008) in Wallace Ecological Modeling
Application v.2.1.2 (Kass etal., 2023). Verified occurrence
data for each species were collated (Supplementary Table
S1). To reduce the effects of spatial sampling bias, a “10 km’
distance threshold was applied, filtering out points that were
closer to this distance than to each other. For Neoc.
formosanus, this process removed only two locations. Climate
data for the current (2.5-min resolution), LGM (2.5-min
resolution), and LIG (30 arc-seconds resolution) periods were
obtained from the WorldClim database
(http://www.worldclim.org/; Hijmans etal.,, 2005). To avoid
model overfitting due to the small sample size, initial climate
variables were filtered according to Pearson correlation tests
(Synes & Osborne, 2011), conducted using IBM SPSS v.19.0.
Among each highly correlated variable pair (|r|20.85), the one
contributing more to the MAXENT model (in terms of
regularized gain or percent contribution) was retained. Nine
variables (bio_2 Mean Diurnal Range, bio_3 Isothermality,
bio_4 Temperature Seasonality, bio_5 Max Temperature of
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Warmest Month, bio_6 Min Temperature of Coldest Month,
bio_8 Mean Temperature of Wettest Quarter, bio_12 Annual
Precipitation, bio_13 Precipitation of Wettest Month, and
bio_14 Precipitation of Driest Month) were selected for
analysis of Neoc. formosanus. Ten variables (bio_1 Annual
Mean Temperature, bio_2 Mean Diurnal Range, bio_3
Isothermality, bio_ 5 Max Temperature of Warmest Month,
bio_8 Mean Temperature of Wettest Quarter, bio_10 Mean
Temperature of Warmest Quarter, bio_12 Annual
Precipitation, bio_13 Precipitation of Wettest Month, bio_14
Precipitation of Driest Month, and bio_15 Precipitation
Seasonality) were used for P. costalis. Nine variables (bio_1
Annual Mean Temperature, bio_2 Mean Diurnal Range, bio_4
Temperature Seasonality, bio_5 Max Temperature of
Warmest Month, bio_8 Mean Temperature of Wettest Quarter,
bio_12 Annual Precipitation, bio_14 Precipitation of Driest
Month, bio_15 Precipitation Seasonality, and bio_18
Precipitation of Warmest Quarter) were used for Neon.
orientalis. The predicted suitable zones for the three corydalid
species were determined by selecting the minimum convex
polygon with a 1° buffer distance.

A distribution model for the three corydalid species was
constructed using MAXENT, incorporating linear, quadratic,
and hinge feature classes derived from filtered occurrence
records. Model performance was evaluated using area under
the curve (AUC) of the receiver operating characteristic (ROC)
plot, omission rate (OR), and corrected Akaike information
criterion (AICc). The best model was then selected and
applied to current climate data (2.5 min resolution) to infer
suitable areas during the LIG and LGM periods, employing the
transfer module with the threshold set to the 10-percentile
training presence value. The predicted distribution maps were
visualized in ARCGIS v.10.0. To compare habitat differences
among the three species, bio_1 Annual Mean Temperature
and bio_12 Annual Precipitation data were extracted in the
current climate dataset (2.5 min resolution) according to the
current distribution records of the three species and visualized
using a two-dimensional (2D) map.

Isolation by distance and environment

To assess the impact of geographic distance and
environmental factors on population genetic differentiation,
isolation by distance (IBD) and isolation by environment (IBE)
tests were conducted, respectively. IBD involved correlation
analysis between geographic distances and pairwise
population genetic differentiation (estimated as Fgt/(1-Fs7))
using the Mantel test in the R package ADE4 v.1.7-22 (Dray &
Dufour, 2007), with 999 permutations. Environmental
distances were calculated following Cao etal. (2016) and
Wang (2013). First, 19 bioclimatic variables were downloaded
from the WorldClim database using the getData function in the
R package RASTER (Hijmans, 2020), with bioclimatic values
for each location then extracted using the cbind function. PCA
was performed to analyze the 19 environmental variables for
each locality using the prcomp function in R, which reduced
the dimensionality of the environmental dataset. The first two
principal components, which captured the most significant
environmental variation across localities, were used to
calculate environmental distances between locations. IBE
involved correlation analysis between environmental distances
and pairwise population genetic differentiation (estimated as
Fs1/(1-Fs7)) using the Mantel test in the R package ADE4
v.1.7-22, with 999 permutations.
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RESULTS

Genetic structure and diversity

A total of 136 mitogenomes and 19 mitochondrial gene
fragments of Neoc. formosanus, along with 195 mitogenomes
of P. costalis and 212 mitogenomes of Neon. orientalis (NCBI
GenBank accession numbers (MW642325, MW965205,
PP230164, OL701282-0L701289, OL703071-0OL703283,
OL753214-0L753347, OM991873—0M991883,
OR420135-0R420329) are shown in Supplementary Table
S1), were analyzed. The genetic distances observed among
the 147 samples of Neoc. formosanus ranged from 0% to
5.7%, while those among the 195 P. costalis samples ranged
from 0% to 3.3% and among the 212 Neon. orientalis samples
ranged from 0% to 6.4%, reflecting substantial genetic
diversity within these populations.

The populations of Neoc. formosanus were divided into four
groups based on BAPS analysis (Figure 1A). Group 1
included populations from Yunnan, Hainan, and some
individuals from Southwest China and West of Central China.
Group 2 included all samples from Taiwan. Group 3 consisted
of the majority of populations from West of Central China and
South China. Group 4 encompassed the remaining samples,
predominantly from East of Central China, East of South
China, and several insular populations from Jiaodong
Peninsula, Korean Peninsula, and Tsushima Island. These
groupings were corroborated by the haplotype and split
networks, which also delineated four distinct groups (Figures
1F, 2D). Furthermore, the PCA results revealed a clear
genetic structure and differentiation among the four groups of
Neoc. formosanus (Figure 1D).

BAPS analysis identified four distinct groups among the P.
costalis populations (Figure 1B). Group 1 consisted solely of
samples from the Taiwan populations. Group 2 included
populations from the Ta-pieh Mountains (AHMZ, HBHG,
HENXX, see detail in Supplementary Table S1) and certain
individuals from East of Central China. Groups 3 and 4
consisted of all remaining samples, primarily from populations
in Central China, Southwest China, and South China. The
haplotype and split networks (Figures 1J, 2B) confirmed the
group divisions, although Group 3 in the haplotype network
was divided into two parts by Groups 1 and 4 (Figure 2B). The
PCA results further corroborated these findings, revealing a
consistent and distinct genetic structure aligned with the BAPS
results (Figure 1H).

BAPS analysis identified three distinct groups among the
Neon. orientalis populations (Figure 1C). Group 1 included
populations from Northern Vietnam and Fangchenggang
(southernmost Guangxi), while all remaining samples,
primarily from Central China and South China, were divided
into Groups 2 and 3. The haplotype network, split network,
and PCA results supported these divisions, showing a clear
genetic structure and genetic differentiation among the three
groups (Figures 1M, P, 2C; Supplementary Table S2).

The genetic diversity metrics for the three corydalid species,
including haplotype (H) number, haplotype diversity (Hd), and
nucleotide diversity (1), are shown in Table 1. Among the
species analyzed, Neoc. formosanus exhibited the highest
genetic diversity. Within Neoc. formosanus, Groups 1 and 2
showed greater genetic diversity compared to Groups 3 and 4.
Conversely, within P. costalis, Groups 1 and 2 showed lower
genetic diversity than Groups 3 and 4. For Neon. orientalis,
genetic diversity across the three groups was relatively

uniform. Landscape shape interpolation revealed a higher
genetic diversity in the southwestern populations compared to
the northeastern populations for both Neoc. formosanus and
Neon. orientalis (Figure 1E, L). In contrast, the genetic
diversity of P. costalis populations increased toward the
eastern regions, with lower diversity observed in the western
regions within their sampling range (Figure 1I).

The YN and TW (see detail in Supplementary Table S1)
populations of Neoc. formosanus showed significantly higher
genetic differentiation from the other populations (Figure 3).
The TW, AHMZ, HBHG, and HENXX populations of P. costalis
exhibited significantly higher differentiation from the other
populations (Figure 3). The GXFC population of Neon.
orientalis showed markedly higher differentiation from the
other populations, with the AHHS, ZJTM, HBJG, ZJSM and
FJTA populations also demonstrating significant differentiation
from the other populations (Figure 3).

The haplotype distribution among the major mountain
ranges of East Asia for the three corydalid species spanned
several regions, including the Hengduan Mountains,
easternmost edge of the Qionglai Mountains, Nanling
Mountains, Wuling Mountains, Wuyi Mountains, Ta-pieh
Mountains, and Tianmu Mountains. In the haplotype network
(Figure 2), haplotypes from Nanling were present in all
mainland groups of the three species, closely related to
haplotypes from the Hengduan, Wuling, and Wuyi Mountains.
Haplotypes from the Tianmu Mountains showed a close
relationship with those from the Wuyi Mountains across all
three species, with a close relationship with Nanling
haplotypes also observed in Neoc. formosanus (Figure 2D).
Overall, our analyses revealed a stronger haplotype
connection between geographically proximate mountain
ranges, such as the Hengduan and Wuling Mountains and the
Nanling and Wuyi Mountains. Interestingly, despite their
geographical separation, a close haplotype relationship was
observed between the Hengduan and Nanling Mountains. In
contrast, haplotypes from other geographically distant
mountain ranges (e.g., Hengduan and Wuyi Mountains and
Tianmu and Wuling Mountains) exhibited greater
differentiation (Figure 2D).

Phylogenetic analysis and molecular dating

The ML and BI analyses, based on mitogenomic data, yielded
consistent phylogenies for the three corydalid species. BSP
analysis of divergence times (in millions of years (Ma))
revealed that Neoc. formosanus and its putative sister species
Neoc. rotundatus diverged approximately 2.591 Ma (95%
HPD: 1.929-3.273 Ma) (Figure 4A; Supplementary Table S3).
Notably, the Hainan population emerged as the sister group to
the remaining populations, with divergence during the early
Pleistocene (1.992 Ma, 95% HPD: 1.488-2.523 Ma). The
Taiwan population formed the sister group to all mainland
populations, with divergence estimated at 1.692 Ma (95%
HPD: 1.291-2.147 Ma). Further divergences were also
identified within other clades. Notably, the Yunnan population
diverged 1.408 Ma (95% HPD: 1.064—1.770 Ma) from its sister
lineage, which included Group 3, Group 4, and some
populations from Southwest and Central China (Group 1).
Clade 3 diverged from its sister clade, including Groups 3 and
4, approximately 1.192 Ma (95% HPD: 0.902—1.490 Ma). The
divergence between Groups 3 and 4 was dated to 0.992 Ma
(95% HPD: 0.764-1.233 Ma). Within Group 4, populations
from the Korean Peninsula and Tsushima lIsland, and a
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Figure 1 Population genetic structure, split tree, PCA, and landscape shape interpolation of Neochauliodes formosanus, Protohermes
costalis, and Neoneuromus orientalis

A-C: Population genetic structure of Neoc. formosanus (A), P. costalis (B), and Neon. orientalis (C) inferred by BAPS v.6.0, with different colored
pie charts representing different groups. D, H, M: PCA results based on mitogenomic data for Neoc. formosanus (D), P. costalis (H), and Neon.
orientalis (M). F, J, P: Split tree of Neoc. formosanus (F), P. costalis (J), and Neon. orientalis (P), with different colored clades representing different
groups. E, I, L: Landscape shape interpolation results for Neoc. formosanus (E), P. costalis (1), and Neon. orientalis (L), with X and Y axes reflecting
geographic coordinates and Z axis representing genetic distances between samples. G: Adult Neoc. formosanus (Photo by Wei Dong). K: Adult P.
costalis (Photo by Xing-Yue Liu). N: Adult Neon. orientalis in northern Vietnam (Photo by Xing-Yue Liu). O: Adult Neon. orientalis in Hunan, China

(Photo by Xing-Yue Liu). Map of China was downloaded from the Ministry of Natural Resources (http://bzdt.ch.mnr.gov.cn/), with the map approval
number GS(2020)4619.
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Table 1 Genetic diversity of groups of three corydalid species based on mitogenomic data

Species Population No. S H Hd m
Neochauliodes formosanus All samples 136 2029 134 0.999 0.0110
Group1 13 735 13 1.000 0.0165
Group2 9 341 9 1.000 0.0091
Group3 35 571 34 0.998 0.0047
Group4 79 1117 78 1.000 0.0053
Protohermes costalis All samples 195 1343 195 1.000 0.0086
Group1 20 166 20 1.000 0.0028
Group2 40 249 40 1.000 0.0020
Group3 56 622 56 1.000 0.0063
Group4 79 739 79 1.000 0.0046
Neoneuromus orientalis All samples 212 1906 184 0.998 0.0100
Group1 5) 224 5 1.000 0.0066
Group2 78 783 68 0.996 0.0061
Group3 129 1032 111 0.997 0.0058

S, number of polymorphic sites; H, number of haplotypes; Hd, haplotype diversity; 7, nucleotide diversity.
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sample from South China, formed a monophyletic group,
which diverged from a lineage containing many samples from
South China and eastern Central China approximately 0.497
Ma (95% HPD: 0.366 Ma—0.628 Ma).

Protohermes costalis and its putative sister species P.
yunnanensis diverged approximately 2.049 Ma (95% HPD:
1.568-2.547 Ma) (Figure 4B; Supplementary Table S3).
Group 1 (Taiwan populations) was identified as the sister
group to the remaining populations, with divergence estimated
at 1.677 Ma (95% HPD: 1.300-2.065 Ma). The divergence
between Group 2 and its sister clade, including Groups 3 and
4, was estimated at 1.462 Ma (95% HPD: 1.148-1.814 Ma).

Within Clade 3, Groups 3 and 4 diverged approximately 1.110
Ma (95% HPD: 0.859-1.377 Ma).

Neoneuromus orientalis and its putative sister species
Neon. similis diverged approximately 1.535 Ma (95% HPD:
1.219-1.864 Ma) (Figure 4C; Supplementary Table S3).
Group 1 (populations from Northern Vietnam and
Fangchenggang in Guangxi, China) initially diverged from its
sister group, including all remaining populations,
approximately 1.371 Ma (95% HPD: 1.107-1.673 Ma). The
GDDW population in Group 2 diverged from its sister clade,
which included Group 3 and the other Group 2 clade, occurred
about 1.111 Ma (95% HPD: 0.891-1.343 Ma). Group 3
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Alternating gray and white population background colors represent different mountain/island populations. Specific population assignment

information of mountains and islands is shown in Supplementary Table S4. Intensity of blue represents size of Fgr value between pairs of

populations, dark blue represents high Fgr value, light blue represents low Fgr value.

diverged from Group 2, except for the GDDW population,
approximately 1.000 Ma (95% HPD: 0.812—-1.201 Ma).

Ancestral area reconstruction
The best models estimated by the standard statistical model
selection for Neoc. formosanus, P. costalis, and Neon.
orientalis were DIV+j, DIVALIKE+j, and DIV+j, respectively.
The ancestral range of all Neoc. formosanus populations
included Yunnan, Hainan, and Taiwan (Figure 4A). Yunnan
and Taiwan were reconstructed as the ancestral range of most
populations, except the Hainan population. The divergence of
the Hainan and Taiwan populations from the mainland
populations was attributed to vicariance events (Figure 4A:
Nodes 2, 3). Yunnan was reconstructed as the ancestral
range of the mainland populations as well as those from the
Korean Peninsula and Tsushima Island (Figure 4A: Node 4).
South China was reconstructed as the ancestral range of
Group 3+Group 4, as well as for the individual groups. Several
major dispersal events were inferred from the analysis
(Figure 4D). The first event likely involved an early dispersal
from Yunnan to South China and western Central China
(Figure 4A: Node 4). The second event suggested multiple
dispersals from South China to Central China (Figure 4A:
Node 5). The third event indicated westward dispersal from
western Central China to neighboring Southwest China
(Figure 4A: Node 10). Additionally, the populations from the
Jiaodong Peninsula, Korean Peninsula, and Tsushima Island
were inferred to have originated from dispersal events out of
South China (Supplementary Figure S1).

The ancestral range of all populations of P. costalis included
Taiwan and eastern Central China (Figure 4B; Supplementary
Figure S2). A vicariance event likely occurred between the
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Taiwan (Group 1) and mainland populations (Figure 4B: Node
2). Eastern Central China was reconstructed as the ancestral
range of all mainland populations (Figure 4B: Node 3),
including Group 2 and Group 3+Group 4. South China was
inferred as the ancestral range of the lineage including Group
4 and the two clades of Group 3 (Figure 4B: Node 5). Western
Central China was inferred as the ancestral range of the
lineage including Group 4 and one clade of Group 3. Among
the major divergences of Groups 2, 3, and 4, several early
dispersals were inferred, including movements from eastern
Central China to South China and from South China to
western Central China. Subsequently, a large number of
multidirectional dispersals were detected among these areas
(Figure 4D).

The ancestral range of all populations of Neon. orientalis
comprised South China and Northern Vietnam (Figure 4C;
Supplementary Figure S3). A vicariance event was inferred
between Group 1 (populations of Northern Vietnam and
southernmost Guangxi) and Group 2+Group 3 (Figure 4C:
Node 2). South China was reconstructed as the ancestral
range of Group 2+Group 3, as well as that of Groups 2 and 3,
respectively (Figure 4C: Nodes 3, 8). Northward dispersals
were inferred from South China to Central China (Figure 4D).

Demographic history analysis

Tajima’s D and mismatch distribution analyses indicated that
all three corydalid species may have undergone population
expansions (Supplementary Figure S4). BSP analysis
suggested that Neoc. formosanus underwent one fast
expansion during 0.14-0.10 Ma, P. costalis underwent a long-
term population expansion during 0.45-0.02 Ma (Figure 5),
and Neon. orientalis underwent two population expansions
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Figure 4 Spatial and temporal divergence among Neochauliodes formosanus, Protohermes costalis, and Neoneuromus orientalis
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A: Chronogram of Neoc. formosanus. B: Chronogram of P. costalis. C: Chronogram of Neon. orientalis. D: Map of East Asia, with colored areas of
endemism for ancestral area reconstruction, and dispersal routes of each species. Node divergence times are provided in Supplementary Table S3.
Pentacles represent dispersal events and triangles represent vicariance events. Black arrows indicate dispersal path of Neoc. formosanus, gray
arrows indicate dispersal path of P. costalis, and white arrows indicate dispersal path of Neon. orientalis. Node numbers in the chronogram are
shown in circles adjacent to the arrows, with estimated dispersal times provided aside corresponding arrows. Map of China was downloaded from
the Ministry of Natural Resources (http://bzdt.ch.mnr.gov.cn/), with map approval number GS (2020) 4619.
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Figure 5 Ecological niche modeling under 10-percentile training presence threshold and Bayesian skyline plots (BSP) for Neochauliodes
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Green dots represent localities with known records used for fitting ecological niche model. In BSP analyses, estimates of means are joined by solid
lines, while shaded area represents 95% high posterior density (HPD) limits. Map of China was downloaded from the Ministry of Natural Resources

(http://bzdt.ch.mnr.gov.cn/), with map approval number GS(2020)4619.

during 0.30-0.18 Ma and 0.07-0.04 Ma, respectively
(Figure 5). However, both Neon. orientalis and Neoc.
formosanus experienced population shrinkage from the end of
the Pleistocene (ca. 0.04 Ma) to the Holocene (Figure 5). To
determine the potential causes of population shrinkage and
specific geographic distributions, historical dynamic analysis
should be performed for each geographic population.
However, due to uneven sampling and low sample sizes in
some geographic populations, the populations of the two
species were divided into multiple groups for analysis based
on genetic structure, geographical flora, mountain information,
and other factors (Supplementary Figure S5). Results
indicated that the Neoc. formosanus populations experienced
significant shrinkage, particularly in the Hengduan Mountains
and adjacent areas (i.e., northern Vietnam and southwestern
Guangxi). In contrast, the Neon. orientalis populations in the
Nanling Mountains and areas south of Nanling Mountains did
not exhibit shrinkage (Supplementary Figure S5).

Ecological niche modeling

Ecological niche modeling for Neoc. formosanus (best model
LQ_2.5: auc.val.avg=0.715, or.10p.avg=0.131, delta.AlCc=0),
P.  costalis (best model H3: auc.val.avg=0.724,
or.10p.avg=0.103, delta.AlCc=0), and Neon. orientalis (best
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model H2: auc.val.avg=0.72, or.10p.avg=0.161, delta.AlCc=0)
indicated strong predictive performance. The predictions for
current suitable distributions for the three corydalid species
were similar to their actual sample distributions (Figure 5). The
LGM distributions for the three species showed similar ranges
to their current suitable distribution areas, with land bridges
connecting the mainland to Hainan Island, Taiwan Island,
Korean Peninsula, and Tsushima Island for Neoc. formosanus
and P. costalis. However, when projecting these niches into
LIG climate conditions, the models indicated that large areas
of Central China would have been unsuitable for these
species (Figure 5).

Ecological niche modeling also revealed that bio_12 Annual
Precipitation was the main factor affecting the suitable habitat
range for all three species. The response curves for bio_12
Annual Precipitation in the best-fit models—LQ_2.5 for Neoc.
formosanus, H3 for P. costalis, and H2 for Neon.
orientalis—indicated that habitat suitability remained stable
under conditions of higher annual precipitation. However,
when annual precipitation fell below 160 mm (represented as
1600 mm on the x-axis due to WorldClim scaling), suitability
for Neon. orientalis and P. costalis decreased sharply, and
when annual precipitation fell below 250 mm, suitability for
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Neoc. formosanus decreased sharply (Supplementary Figure
S6A-C). 2D ecological visualization based on bio_1 Annual
Mean Temperature and bio_12 Annual Precipitation
suggested that Neoc. formosanus may have a greater
tolerance to a wider temperature and precipitation range
compared to the other two species (Supplementary Figure
S6D).

Isolation by distance and environment

The Mantel tests for IBD and IBE revealed significant
correlations for all three corydalid species (Figure 3). Notably,
IBE analysis demonstrated a highly significant correlation for
Neon. orientalis (r=0.464, P=0.002) compared to the other two
species. In contrast, IBD analysis showed similar significant
correlations across all three species (Figure 3).

DISCUSSION

Origin of insular populations

Our results showed that the Taiwan populations of Neoc.
formosanus and P. costalis were genetically distinct from their
mainland counterparts, diverging during the late Pliocene and
early Pleistocene. Similarly, although the Hainan population of
Neoc. formosanus was grouped with the Yunnan populations
in BAPS analysis, it was found to be genetically independent,
with its isolation dated slightly earlier than that of the Taiwan
populations. This early divergence between mainland and
insular populations highlights the significant role of island
isolation in shaping the genetic endemism of insular
populations in Corydalidae. The observed genetic endemism
of the Hainan and Taiwan populations may also be related to
the low vagility of these species. In contrast, species with
stronger dispersal capabilities, such as the East Asian birds
Alcippe morrisonia and Stachyridopsis ruficeps (Qu et al.,
2015), widespread bat Hipposideros armiger (Lin et al., 2014),
and oriental garden lizard Calotes versicolor (Huang et al.,
2013), appear to experience more frequent gene flow between
Hainan, Taiwan and the East Asian mainland.

Our haplotype network and ancestral area reconstruction
analyses clearly indicated that the Hainan and Taiwan
populations originated from colonization by their mainland
ancestors. The ancestral ranges, which include regions of
South China and eastern Central China, along with the close
haplotype relationships between these mainland populations
and the Taiwan population, suggest that these areas likely
served as the source for the Taiwan population. Geological
and faunal analyses support this inference, indicating that
Taiwan was connected to the Asian continent by a land bridge
during the Pliocene (Huang et al., 1995; Ota, 1991, 1997; Yu,
1995). Nevertheless, the timing of dispersal events between
the mainland and Taiwan differed slightly between the two
corydalid species. The insular colonization of Neoc.
formosanus potentially occurred approximately 0.5 million
years earlier than that of P. costalis. Notably, the divergence
between the mainland and Taiwan populations of Neoc.
formosanus (1.692 Ma (95% HPD: 1.291-2.147 Ma)) and P.
costalis (1.677 Ma (95% HPD: 1.300-2.065 Ma)) appear to
have been synchronous, likely driven by the same vicariance
event, possibly isolation of the island isolation or submersion
of the land bridge during the early Pleistocene, leading to
population differentiation. This hypothesis is further supported
by the vicariance events identified in the ancestral area
reconstruction (Figure 4A: Node 3, Figure 4B: Node 2), which

emphasize the role of island isolation in driving the
differentiation of these insular populations.

The inferred mainland origin of the Hainan population of
Neoc. formosanus was located around Southwestern China,
as suggested by the close haplotype relationships observed
between the populations from Hainan, Yunnan, Guizhou, and
Sichuan. The southeastward dispersal into Hainan may have
followed a route through South China (e.g., Guangxi) or
Northern Vietnam, given the probable existence of a land
connection between Hainan and the mainland at the Beibu
Gulf (Liang, 2013; Replumaz & Tapponnier, 2003; Wan, 2011;
Zhang etal., 2005) and the remarkable biotic similarities
between Hainan and Vietnam (Jiang et al., 2019; Zhu, 2016,
2017). Although the Hainan and Yunnan populations were
both classified into Group 1, the genetic distance between the
Hainan and mainland populations, including those in Yunnan,
ranged from 0.034 to 0.055. The estimated divergence time of
the Hainan population (1.992 Ma (95% HPD: 1.488-2.523
Ma)) generally aligns with the separation of Hainan from the
mainland due to the emergence of the Qiongzhou Strait,
driven by rising sea levels during the early Pleistocene (c. 2
Ma) (Zhao et al., 2007; Zhu et al., 2016a).

In contrast to the early isolation of the Hainan and Taiwan
populations, the insular Neoc. formosanus population from
Tsushima Island and the nearby population from the Korean
Peninsula exhibited low genetic endemism but significant
admixture with populations from South China and eastern
Central China. Similarly, the Neoc. formosanus population
from Jiaodong Peninsula was genetically closer to those from
Tsushima and South China. Phylogeographic analysis
suggested that these northeastern insular and peninsular
populations likely originated in South China and migrated
northward along a corridor provided by the East China Sea
land bridges during the middle and late Pleistocene, a period
when these regions would have been highly suitable for the
species distribution (Figure 5). Similar dispersal patterns have
been proposed for other species, such as the assassin bug
Sphedanolestes impressicollis, Indo-Malayan Polyura butterfly
species group, rock shell Thais clavigera, and amphipod
Amphiareus obscuriceps, all of which exhibit close genetic
relationships among populations from the southeastern
Chinese Mainland, Korean peninsula, and Japanese
archipelago (Du etal., 2019; Guo etal., 2015; Toussaint &
Balke, 2016; Ye etal.,, 2014; Zhang etal.,, 2016). These
studies support the idea that Pleistocene land bridges
facilitated the dispersal of insects inhabiting lowland and
coastal regions. However, such dispersal is not expected for
insects inhabiting highland regions or those with poor
dispersal abilities (Tojo et al., 2017). Therefore, the successful
dispersal of Neoc. formosanus to the Korean Peninsula and
Tsushima Island is particularly remarkable, given the
mountain-dwelling habit and low vagility of fishflies.

Another notable issue arises from the absence of Neon.
orientalis on any of the East Asian islands. Our molecular
dating indicated that the divergence of Neon. orientalis from its
sister species (1.535 Ma (95% HPD: 1.219-1.864 Ma))
occurred much later in than that of Neoc. formosanus (2.591
Ma (95% HPD: 1.929-3.273Ma)) and P. costalis (2.049 Ma
(95% HPD: 1.568-2.547 Ma)), both of which have populations
established on Hainan and Taiwan. Crucially, the divergence
of Neon. orientalis also occurred later than that of the Hainan
and mainland populations (1.992 Ma (95% HPD: 1.488-2.523
Ma)) of Neoc. formosanus and the Taiwan and mainland
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populations of Neoc. formosanus (1.692 Ma (95% HPD:
1.291-2.147 Ma)) and P. costalis (1.677 Ma (95% HPD:
1.300-2.065 Ma)). Despite the presence of land bridges
between these islands and the East Asian mainland during
Pleistocene glaciations, no subsequent insular colonization
could be traced in these corydalid species, suggesting that
Hainan and Taiwan have served as significant barriers to
corydalid dispersal since the late Pleistocene. The later
divergence of Neon. orientalis likely meant it missed the
window of opportunity for migration to these islands. A similar
explanation may account for the absence of insular
populations in the widespread species Neon. ignobilis (closely
related to Neon. orientalis), which likely diverged
contemporaneously with Neon. orientalis (Lin et al., 2022).

Role of mountains: Barrier or corridor
Mountains play a crucial role as both barriers and corridors,
significantly shaping the phylogeographic patterns of species
(Muellner-Riehl, 2019; Smissen etal.,, 2013; Wang etal.,
2022). Here, Mantel tests revealed a strong positive
correlation between genetic differentiation and geographical
distance among the three corydalid species, highlighting their
limited dispersal abilities and heightened sensitivity to
geographical isolation. These findings underscore the
influence of major mountain ranges as barriers to population
differentiation in these species across in the East Asian
mainland. For instance, the Hengduan Mountains, which
formed alongside the uplift of the Qinghai-Xizang Plateau,
likely facilitated divergence of the Yunnan populations of
Neoc. formosanus during the Pleistocene (1.692 Ma, 95%
HPD: 1.291-2.147 Ma). A similar barrier effect of this
mountain range has been observed in the dobsonfly species
Neon. ignobilis (Lin et al., 2022). In East China, the Ta-pieh
Mountains, located at the junction of Anhui, Hubei, and
Henan, may have acted as a barrier that isolated Group 2 of
P. costalis (including the HENXX, AHMZ, and HBHG
populations) from other mainland populations during the
Pleistocene (1.462 Ma, 95% HPD: 1.148-1.814 Ma).
Additionally, the Shiwandashan Mountains, situated at the
border of China and Vietnam, likely contributed to the early
divergence of Group 1 of Neon. orientalis (comprising
populations from Northern Vietnam and Fangchenggang in
Guangxi) around 1.371 Ma (95% HPD: 1.107-1.673 Ma).
While mountains often act as barriers, they also function as
corridors for the dispersal of species, as illustrated in our
haplotype network (Figure 2). The Nanling Mountain range, in
particular, appears to be an important diffusion corridor for the
three corydalid species. Spanning more than 1 000 km from
west to east, this range forms a natural boundary between
Guangxi-Guangdong and Hunan-Jiangxi, connecting the
Yunnan-Guizhou Plateau in the west and Wuyi Mountains in
the east. The Nanling Mountains also represent a significant
ecological divide in subtropical China, distinguishing mid- and
northern subtropical climates from southern subtropical or
tropical climates. Long considered a major glacial refugium,
this region harbors high biodiversity in East Asia (Huang et al.,
2012; Qiu etal., 2011; Tian etal., 2018; Xu etal., 2021).
Previous research on various East Asian plants (e.g.,
Eomecon chionantha and Sargentodoxa cuneata) has shown
that the Nanling Mountains act as an essential corridor for
species dispersal (Qiu etal., 2011; Tian etal., 2015, 2018;
Yang etal., 2019). The geographic location and favorable
climatic condition of the Nanling Mountains likely facilitate their
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role as a dispersal corridor for the East Asian corydalid
species. Despite the limited flight ability of adult corydalids,
their larvae, which inhabit lotic streams and rivers, may
disperse over considerable distances to other mountainous
areas with similar freshwater habitats. However, this dispersal
does not appear to follow major rivers (e.g., Yangtze River),
as evidenced by the absence of close genetic relationships
among populations near these rivers. Furthermore, the
haplotype network revealed gene flow among adjacent
mountain populations (e.g., Wuyi Mountains vs. Tianmu
Mountains, Wuyi Mountains vs. Ta-pieh Mountains, northern
Hengduan Mountains vs. Wuling Mountains), highlighting the
roles of East Asian mountains as corridors for corydalid
dispersal. The geological impact on the phylogeographic
history of these species likely extend to other aquatic insects
with similar ecological niches and biology, warranting further
investigation.

Sympatric distribution with complex phylogeographic
patterns
Our comparative phylogeographic analyses provide crucial
insights into the evolutionary history of the three sympatric
corydalid species from the East Asian mainland. The
distribution of Neoc. formosanus across the mainland likely
originated from eastward dispersal, first from Yunnan to South
China and West of Central China. This was followed by
northeastward dispersal from South China to East of Central
China, and northwestward dispersal from South China through
West of Central China to Southwest China. In contrast, the
mainland populations of P. costalis likely originated in
northeastern areas, specifically East of Central China,
followed by southwestward dispersal to South China and
subsequent dispersal through West of Central China to
Southwest China. For Neon. orientalis, dispersal events
appear to have occurred from South China toward both East
and West of Central China, mirroring the phylogeographic
history of the congeneric species Neon. ignobilis (Lin et al.,
2022). These migration processes are believed to have
occurred during the Pleistocene glacial cycles, starting around
3 Ma. The broad and overlapping distributions of these
species across South, Central, and Southwest China were
likely established prior to the LGM. The existence of multiple
refugia in the Hengduan Mountains and South China suggests
that the dispersal routes observed in Neoc. formosanus and
Neon. orientalis, from south to north, west to east, or
southwest to northeast, represent a broader pattern of
dispersal seen in numerous East Asian species (Fan etal.,
2011; Li etal, 2018; Qu etal.,, 2014, 2015; Wei & Zhang,
2022; Ye etal, 2016). Nevertheless, the southwestward
dispersal from East of Central China, as observed in P.
costalis, is relatively rare (Fu & Wen, 2023), highlighting the
significant role of the Ta-pieh Mountains and nearby ranges
(e.g., Tianmu Mountains) as refugia in eastern China.
Post-glaciation expansion patterns in East Asian species
are species-specific and vary in timing, direction, and scale
due to the relatively weak impact of the Pleistocene glaciation
(Fu & Wen, 2023). Demographic histories also varied among
the three studied species in the context of the entire
population assembly. Notably, P. costalis exhibited a long-
term population expansion between 0.02-0.45 Ma (Figure 5),
while Neoc. formosanus and Neon. orientalis experienced
population contractions from the Late Pleistocene to Holocene
(ca. 0-0.04 Ma) after the LIG expansion. Ecological niche
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modeling revealed an expansion in the suitable habitat area
for all three species from the LIG to LGM. However, when
comparing the demographic history of different Neoc.
formosanus groups, only the Hengduan Mountain populations
underwent contraction (Supplementary Figure S5), which may
be due to the unfavorable habitats in the Hengduan Mountains
(Figure 5) and the low gene flow among populations in this
region. In contrast, Neon. orientalis populations in the Nanling
Mountains did not experience contraction from the end of
Pleistocene to the Holocene (Supplementary Figure S5). The
Nanling Mountains, which were never glaciated, maintained
stable environmental conditions during the last glacial period,
including consistent annual precipitation (an important factor
for the suitable distribution of Neon. orientalis) (Xiao et al.,
2007). These stable conditions likely contributed to the
persistence of Neon. orientalis populations in this region.
Additionally, interspecific competition with the closely related
and usually sympatric congener Neon. ignobilis may have
contributed to the population shrinkage of Neon. orientalis,
alongside climatic factors. The timing of population
expansions in these two species is also consistent (Lin et al.,
2022). However, while Neon. ignobilis experienced continued
population expansion into the Holocene, achieving a broader
distribution range extending from southern Indochina to the
Qinling Mountains, Neon. orientalis populations began
contracting at the end of Pleistocene, with their range limited
to South and Central China, extending only as far south as
northern Indochina (Yang etal., 2018). This suggests that
interspecific competition for ecological resources may have
driven the different phylogeographic histories of these two
species.

Among the three corydalid species studied, Neoc.
formosanus has the broadest range and is the only one
extending into the Palearctic region. Notably, Neoc.
formosanus appears to have migrated northward to the
Korean peninsula and Tsushima Island via Pleistocene land
bridges, despite ecological niche modeling suggesting that
these land connections along the eastern coast of East Asia
were suitable for all three corydalid species. The population
expansion of Neoc. formosanus may be attributed to its
stronger adaptability to a diverse range of habitats
(Supplementary Figure S6). A key factor contributing to this
adaptability is the presence of respiratory tubes on the eighth
abdominal segment of fishfly larvae, including Neoc.
formosanus—a feature in all dobsonfly larvae. These tubes
allow fishfly larvae to access atmospheric oxygen and thrive in
various lentic freshwater habitats with low dissolved oxygen,
including slow-flowing streams, shallow stream edges, and
ponds (Hayashi, 1989c; Smith, 1970). This biological trait
likely facilitated the expansion of Neoc. formosanus into a
greater variety of habitats under Pleistocene environmental
change.

CONCLUSIONS

This study represents the first comparative phylogeographic
analysis of the aquatic insect order Megaloptera, highlighting
species-specific phylogeographic histories among the three
East Asian corydalid species studied. Although these species
share largely overlapping mainland distributions, the
processes of population differentiation and expansion differed
across species. A key finding was the consistent impact of
early Pleistocene isolation between populations on Hainan,
Taiwan, and the East Asian mainland. Additionally, our

research elucidated the dual role of major mountain ranges in
East Asia, acting as both barriers and corridors in shaping the
population structure of East Asian corydalids. Our results also
provided evidence for the significance of Pleistocene land
bridges along the eastern coast of East Asia in facilitating the
dispersal of insects inhabiting, including those inhabiting
lowlands, coastal regions, and mountainous areas with low
dispersal abilities. Overall, this study offers new insights into
the historical dynamics of species in East Asia under
Pleistocene glacial cycling, and sheds light on the island
biogeography of aquatic insects. Future research should
extend these analyses to more widely distributed
megalopteran species in East Asia and other regions, using
whole-genome-scale data to further elucidate the historical
and ecological factors shaping phylogeographic patterns.
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