留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparison and analysis between PST and FST of mitten crabs in the Minjiang River

ZHOU Lu WANG Cheng-Hui CHENG Qi-Xuan WANG Zhong-Qing

ZHOU Lu, WANG Cheng-Hui, CHENG Qi-Xuan, WANG Zhong-Qing. Comparison and analysis between PST and FST of mitten crabs in the Minjiang River. Zoological Research, 2012, 33(3): 314-318. doi: 10.3724/SP.J.1141.2012.03314
Citation: ZHOU Lu, WANG Cheng-Hui, CHENG Qi-Xuan, WANG Zhong-Qing. Comparison and analysis between PST and FST of mitten crabs in the Minjiang River. Zoological Research, 2012, 33(3): 314-318. doi: 10.3724/SP.J.1141.2012.03314

闽江水系绒螯蟹的表型性状差异与分子遗传差异的比较与分析

doi: 10.3724/SP.J.1141.2012.03314
基金项目: 上海市科委重点科技攻关项目(09391911100);上海市中华绒螯蟹产业技术体系建设项目(D8003-10-0208)
详细信息
  • 中图分类号: Q959.223;Q347;Q31;Q16

Comparison and analysis between PST and FST of mitten crabs in the Minjiang River

  • 摘要: 表型性状差异(differentiation in phenotypic traits, PST)和分子遗传差异(differentiation at neutral molecularmarkers, FST)是近期进化生物学的研究热点之一。闽江水系是我国中华绒螯蟹与合浦绒螯蟹的主要混杂地域, 是研究绒螯蟹遗传与进化的理想地之一。为探讨闽江水系绒螯蟹的PST和FST, 以2009和2010年度闽江水系的133个绒螯蟹样本为材料, 进行了14 个表型数量性状差异分析和6 个微卫星标记的遗传差异分析。结果发现:除3 个表型性状不存在显著差异外, 其他表型性状在不同年份间均存在极显著差异(P<0.01); 2009年绒螯蟹的平均期望杂合度极显著高于2010年绒螯蟹(P=0.008), 而平均等位基因丰富度、观测杂合度和近交系数均不存在显著差异(P=0.136~0.675); 年份间的平均FST为0.1429; 通过对PST 与FST 的比较发现, 除第二步足掌节长度(F2)性状外,其他表型数量性状的PST 值均高于FST 值, 表明这些性状均受到了较明显的选择压力。该文研究结果为绒螯蟹的分子进化研究积累了资料, 也为其他水产生物的PST和FST比较研究提供了参考。
  • [1] Brommer JE. 2011. Whither PST? The approximation of QST by PST in evolutionary and conservation biology [J]. J Evol Biol, 24(6): 1160-1168.
    [2] Cheng QX, Wang CH, Xu JW, Wang J, Yang QL. 2009. Novel microsatellite markers for endangered Hepu mitten crab, Eriocheir hepuensis [J]. Conserv Genet Resour, 1(1): 357-360.
    [3] Edelaa P, Björklund M. 2011. If FST does not measure neutral genetic differentiation, then comparing it with QST is misleading. Or is it? [J].Mol Ecol, 20(9): 1805-1812.
    [4] Evanno G, Castella E, Goudet J. 2006. Evolutionary aspects of population structure for molecular and quantitative traits in the freshwater snail Radix balthica [J]. J Evol Biol, 19(4): 1071-1082.
    [5] Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3. 5: A new series of programs to perform population genetics analyses under Linux and Windows [J]. Mol Ecol Resour, 10(3): 564-567.
    [6] Goudet J. 1995. FSTAT (version 1. 2): A computer program to calculate F-statistics [J]. Heredity, 86(6): 485-486.
    [7] Guo JY, Ng NK, Dai A, Ng PKL. 1997. The taxonomy of three commercially important species of mitten crabs of the genus Eriocheir de Hann, 1835 (Crustacea: Decapod: Brachyura: Grapsidae) [J]. Raffles Bull Zool, 45(2): 445-476.
    [8] Lande R. 1992. Neutral theory of quantitative genetic variance in an island model with local extinction and colonization [J]. Evolution, 46(2): 381-389.
    [9] Leeann TR. 2008. Female preference for male phenotypic traits in a fiddler crab: do females use absolute or comparative evaluation? [J]. Anim Behav, 77(1): 139-143.
    [10] Leinonen T, Cano JM, Mäkinen H, Merilä J. 2006. Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks [J]. Evol Biol, 19(6): 1803-1812.
    [11] Ma HT, Chang YM, Yu DM, Sun XW. 2007. Microsatellite variations among four populations of Eriocheir sinensis [J]. Zool Res, 28 (2): 126-133. [马海涛, 常玉梅, 于冬梅, 孙效文. 2007. 利用微卫星分子 标记分析四个中华绒螯蟹群体的遗传多样性. 动物学研究, 28 (2): 126-133.]
    [12] McClelland EK, Naish KA. 2007. Comparisons of FST and QST of growth-related traits in two populations of Coho Salmon [J]. Trans Am Fish Soc, 136(5): 1276-1284.
    [13] Merilä J, Crnokrak P. 2001. Comparison of genetic differentiation at marker loci and quantitative traits [J]. J Evol Biol, 14(6): 892-903.
    [14] McKay JK, Latta RG. 2002. Adaptive population divergence: markers, QTL and traits [J]. Trend Ecol Evol, 17(6): 285-291.
    [15] Myers JM, Hershberger WK, Saxton AM, Iwamoto RN. 2001. Estimates of genetic and phenotypic parameters for length and weight of marine net-pen reared coho salmon (Oncorhynchus kisutch Walbaum)[J]. Aquac Res, 32(4): 277-285.
    [16] Ng NK, Guo JY, Ng PKL. 1999. Generic affinities of Eriocheir leptognathus and E. formosa with description of a new genus (Brachyura: Grapsidae:Varuninae) [J]. J Crustacean Biol, 19(1): 154-170.
    [17] O’Hara RB, Merilä J. 2005. Bias and precision in QST estimates: problems and some solutions [J]. Genetics, 171(3): 1331-1339.
    [18] Raeymaekers JAM, Van Houdt JKJ, Larmuseau MHD, Geldof S, Volckaert FAM. 2007. Divergent selection as revealed by PST and QTL-based FST in three-spined stickleback (Gasterosteus aculeatus) populations along a coastal-inland gradient [J]. Mol Ecol, 16(4): 891-905.
    [19] Santure AW, Wang JL. 2009. The joint effects of selection and dominance on the QST-FST contrast [J]. Genetics, 181(1): 259-276.
    [20] Spitze K. 1993. Population structure in Daphnia obtusa: quantitative genetic and allozymic variation [J]. Genetics, 135(2): 367-374.
    [21] Traka-Mavrona E. 1996. Effects of competition on phenotypic expression and differentiation of five quality traits of carrot (Daucus carota L.) and their implications in breeding [J]. Sci Hortic:Amsterdam, 65(4): 335-340.
    [22] Volis S, Yakubov B, Shulgina I, Ward D, Mendlinger S. 2005.
    [23] Distinguishing adaptive from nonadaptive genetic differentiation: comparison of QST and FST at two spatial scales [J]. Heredity, 95(6): 466-475.
    [24] Wang CH, Li CH, Li SF. 2008. Mitochondrial DNA-inferred population structure and demographic history of the mitten crab (Eriocheir sensu stricto) found along the coast of mainland China [J]. Mol Ecol, 17(15): 3515-3527.
    [25] Weir BS, Cockerham CC. 1984. Estimating F-statistic for the analysis of population-structure[J]. Evolution, 38(6): 1358-1370.
    [26] Whitlock MC, Guillaume F. 2009. Testing for spatially divergent selection: comparing QST to FST[J]. Genetics, 183(3): 1055-1063.
    [27] Whitlock ME. 2008. Evolutionary inference from QST [J]. Mol Ecol, 17(8): 1885-1896.
    [28] Wright S. 1951. The genetical structure of populations [J]. Ann Eugen, 15(1): 323-354.
    [29] Wright S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating [J]. Evolution, 19(3): 395-420.
    [30] Yang W, Ye QG, Li ZZ, Huang HW. 2008. Genetic differentiation of quantitative traits and local adaptability of remnant populations of Isoetes sinensis and implications for conservation and genetic reinforcement[J].J Plant Ecol, 32(1): 143-151. [杨伟, 叶其刚, 李作洲, 黄宏文. 2008. 中华水韭残存居群的数量性状分化和地方适应性及其对保育遗传 复壮策略的提示. 植物生态学报, 32(1): 143-151.]
    [31] Zhang Y, Lu CY, Cao DC, Xu P, Wang S, Li HD,Zhao ZX, Sun XW.2010.Rates and patterns of microsatellite mutations in common carp (Cyprinus carpio L.) [J]. Zool Res, 31(5):561-564. [张研, 鲁翠云, 曹 顶臣, 徐鹏, 王书, 李恒德, 赵紫霞, 孙效文. 2010. 鲤鱼微卫星突 变速率和模式. 动物学研究, 31(5):561-564.]
    [32] Zhao NG, Du NS, Bao XS. 1988. The artificial propagation and aquaculture of Eriocheir sinensis [M]. Hefei: Anhui Science & TechnologyPublishing House, 75-77. [赵乃刚, 堵南山, 包祥生. 1988. 中华绒螯 蟹的人工繁殖与增养殖. 合肥: 安徽科学技术出版社, 75-77.]
  • 加载中
计量
  • 文章访问数:  1986
  • HTML全文浏览量:  257
  • PDF下载量:  1966
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-05
  • 修回日期:  2012-04-17
  • 刊出日期:  2012-06-22

目录

    /

    返回文章
    返回