留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comprehensive silk gland multi-omics comparison illuminates two alternative mechanisms in silkworm heterosis

Han Xu Lei Chen Xiao-Ling Tong Hai Hu Li-Yuan Liu Gui-Chun Liu Ya-Nan Zhu Ruo-Ping Zhao Wen Wang Fang-Yin Dai Xin Li Hui Xiang

Han Xu, Lei Chen, Xiao-Ling Tong, Hai Hu, Li-Yuan Liu, Gui-Chun Liu, Ya-Nan Zhu, Ruo-Ping Zhao, Wen Wang, Fang-Yin Dai, Xin Li, Hui Xiang. Comprehensive silk gland multi-omics comparison illuminates two alternative mechanisms in silkworm heterosis. Zoological Research, 2022, 43(4): 585-596. doi: 10.24272/j.issn.2095-8137.2022.065
Citation: Han Xu, Lei Chen, Xiao-Ling Tong, Hai Hu, Li-Yuan Liu, Gui-Chun Liu, Ya-Nan Zhu, Ruo-Ping Zhao, Wen Wang, Fang-Yin Dai, Xin Li, Hui Xiang. Comprehensive silk gland multi-omics comparison illuminates two alternative mechanisms in silkworm heterosis. Zoological Research, 2022, 43(4): 585-596. doi: 10.24272/j.issn.2095-8137.2022.065

综合丝腺多组学比较揭示家蚕杂种优势的两种备选机制

doi: 10.24272/j.issn.2095-8137.2022.065

Comprehensive silk gland multi-omics comparison illuminates two alternative mechanisms in silkworm heterosis

Funds: This work was supported by the National Natural Science Foundation of China (31371286, 32070411, 81872299, 31830094, U20A2058), Guangzhou Science Technology Project (201904010007), Shenzhen Science and Technology Program (JCYJ20190807160011600, JCYJ20210324124808023), and Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology (GDKCFY2101)
More Information
  • 摘要: 杂种优势是动物和植物中的普遍存在的一种现象,其潜在机制复杂多样。该研究以两种常用的家蚕杂交系统为模型,利用多组学技术,以回答两个问题:不同杂交策略之间是否存在可能的内在关联;表观遗传机制对家蚕杂种优势的贡献。我们证明了两个杂交系统之间的丝腺转录组格局存在显著差异,表现在杂交优势后代与亲本相比的基因表达水平差异和表达模式差异。四元杂交系统的杂交优势主要是由上调基因和亲本显性上调表达模式基因引起,这些基因主要参与多种转运过程、细胞氮化合物分解代谢、葡萄糖代谢过程以及三羧酸循环(TCA循环)。与此相反,二元系统的杂种优势则是由下调基因和超亲下调表达模式基因引起,这些基因主要参与机体基本的氮合成代谢和运作。该研究还证明了 DNA 甲基化可以通过调节一些杂种优势相关基因的表达来促进杂种优势。总的来说,我们阐明了两种可能有助于蚕杂种优势形成的备选机制,这两种机制都是有利于提高能源和氮的利用效率来提高蚕丝产量。
    #Authors contributed equally to this work
  • Figure  1.  Offspring of two hybrid systems showed significant hybrid vigor

    A: Design of quaternary and binary hybrid systems. B, C: Statistical results of phenotypes of total cocoon weight and cocoon shell weight for quaternary hybrid system. D, E: Statistical results of phenotypes of total cocoon weight and cocoon shell weight for binary hybrid system. Significant differences are indicated as *: P<0.05, **: P<0.01, and ***: P<0.001, two-tailed t-test. F: PCA based on genome-wide SNP data of both systems. G: PCA based on gene expression data of both systems.

    Figure  2.  Comparisons of DEGs between hybrid offspring and their parents in two hybrid systems

    A, B: Classification of up-regulated (A) and down-regulated (B) DEGs between seven groups in quaternary hybrid system. C, D: Classification of up-regulated (C) and down-regulated (D) expression genes between four groups in binary hybrid system. E, F: Overlapping up-regulated (E) and down-regulated (F) DEGs between two groups (F1_vs_F2 in quaternary system and F0_vs_F1 in binary system). G: Enrichment analysis of up-regulated DEGs in E. H: Enrichment analysis of down-regulated DEGs in F. Black text indicates GO term and blue text indicates KEGG pathway in G and H.

    Figure  3.  Differences in DEPGs between two hybrid systems

    A: Distribution of DEPGs in hybrid offspring in quaternary hybrid system. B: Functions of PDU genes in hybrid offspring in quaternary hybrid system. C: Distribution of DEPGs in hybrid offspring in binary hybrid system. D: Functions of TD genes in hybrid offspring in binary hybrid system. E: Overlapping MDD genes in hybrid offspring between hybrid systems. F: Functions of MDD genes in hybrid offspring in binary hybrid system. Black text indicates GO term and blue text indicates KEGG pathway in B, D and F.

    Figure  4.  Contribution of DNA methylation to hybrid vigor formation

    A: PCA based on genome-wide SNP data of quaternary hybrid system. B: PCA based on gene expression data of quaternary hybrid system. C: PCA based on methylation level of gene body region of quaternary hybrid system. D: Classification of genes with DMRs in gene body region among seven groups in quaternary hybrid system. E: Classification of genes with DMRs in promoter region among seven groups in quaternary hybrid system. F: Overlapping genes with DMRs in gene body region between different varieties (JF0_vs_CF0 and JF1_vs_CF1) or between hybrid individuals and parents in quaternary hybrid system (F1_vs_F2).

    Figure  5.  Two PDU genes involved in protein synthesis and transport are regulated by DNA methylation

    A: Overlapping PDU genes and genes with DMRs in gene body region between hybrid offspring and their maternal parent in quaternary hybrid system. B: Methylation level and read depth of DMR in twelfth intron of GLEAN_00865 gene in hybrid individuals and their parents. C: Methylation level and read depth of DMR in seventh exon of GLEAN_05534 gene in hybrid individuals and their parents. D: Methylation level of DMRs and expression level of GLEAN_00865 and GLEAN_05534 genes in hybrid individuals and their parents.

  • [1] Adolf F, Rhiel M, Hessling B, Gao Q, Hellwig A, Béthune J, et al. 2019. Proteomic profiling of mammalian COPII and COPI vesicles. Cell Reports, 26(1): 250−265.e5. doi: 10.1016/j.celrep.2018.12.041
    [2] Akram M. 2014. Citric acid cycle and role of its intermediates in metabolism. Cell Biochemistry and Biophysics, 68(3): 475−478. doi: 10.1007/s12013-013-9750-1
    [3] Arakel EC, Schwappach B. 2018. Formation of COPI-coated vesicles at a glance. Journal of Cell Science, 131(5): jcs209890. doi: 10.1242/jcs.209890
    [4] Bastiani MJ, De Couet HG, Quinn JMA, Karlstrom RO, Kotrla K, Goodman CS, et al. 1992. Position-specific expression of the annulin protein during grasshopper embryogenesis. Developmental Biology, 154(1): 129−142. doi: 10.1016/0012-1606(92)90054-K
    [5] Béthune J, Wieland FT. 2018. Assembly of COPI and COPII vesicular coat proteins on membranes. Annual Review of Biophysics, 47: 63−83. doi: 10.1146/annurev-biophys-070317-033259
    [6] Birchler JA, Auger DL, Riddle NC. 2003. In search of the molecular basis of heterosis. The Plant Cell, 15(10): 2236−2239. doi: 10.1105/tpc.151030
    [7] Birchler JA, Yao H, Chudalayandi S. 2006. Unraveling the genetic basis of hybrid vigor. Proceedings of the National Academy of Sciences of the United States of America, 103(35): 12957−12958. doi: 10.1073/pnas.0605627103
    [8] Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114−2120. doi: 10.1093/bioinformatics/btu170
    [9] Børsheim E, Cree MG, Tipton KD, Elliott TA, Aarsland A, Wolfe RR. 2004. Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. Journal of Applied Physiology, 96(2): 674−678. doi: 10.1152/japplphysiol.00333.2003
    [10] Chen ZJ. 2013. Genomic and epigenetic insights into the molecular bases of heterosis. Nature Reviews Genetics, 14(7): 471−482. doi: 10.1038/nrg3503
    [11] Cui Y, Liu ZL, Li CC, Wei XM, Lin YJ, You L, et al. 2021. Role of juvenile hormone receptor Methoprene-tolerant 1 in silkworm larval brain development and domestication. Zoological Research, 42(5): 637−649. doi: 10.24272/j.issn.2095-8137.2021.126
    [12] Davenport CB. 1908. Degeneration, albinism and inbreeding. Science, 28(718): 454−455. doi: 10.1126/science.28.718.454.a
    [13] Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5): 491−498. doi: 10.1038/ng.806
    [14] Dyer WTT. 1877. The effects of cross and self-fertilisation in the vegetable kingdom. Nature, 15(381): 329−332. doi: 10.1038/015329a0
    [15] East EM. 1936. Heterosis. Genetics, 21(4): 375−397. doi: 10.1093/genetics/21.4.375
    [16] Feng Y, Lei X, Zhang L, Wan H, Pan H, Wu J, et al. 2021. COPB2: a transport protein with multifaceted roles in cancer development and progression. Clinical and Translational Oncology, 23(11): 2195−2205. doi: 10.1007/s12094-021-02630-9
    [17] Fu DH, Xiao ML, Hayward A, Fu Y, Liu G, Jiang GJ, et al. 2014. Utilization of crop heterosis: a review. Euphytica, 197(2): 161−173. doi: 10.1007/s10681-014-1103-7
    [18] Ge Q, Xiao R, Yuan Y, He SQ, Chen L, Ma SS, et al. 2020. Transcriptome and proteomics-based analysis to investigate the regulatory mechanism of silk gland differences between reciprocal cross silkworm. Bombyx mori. Journal of Asia-Pacific Entomology, 23(4): 1101−1113. doi: 10.1016/j.aspen.2020.09.002
    [19] Goddard ME. 2012. Uses of genomics in livestock agriculture. Animal Production Science, 52(3): 73−77. doi: 10.1071/AN11180
    [20] Guo M, Yang SA, Rupe M, Hu B, Bickel DR, Arthur L, et al. 2008. Genome-wide allele-specific expression analysis using massively parallel signature sequencing (MPSSTM) reveals cis-and trans-effects on gene expression in maize hybrid meristem tissue. Plant Molecular Biology, 66(5): 551−563. doi: 10.1007/s11103-008-9290-z
    [21] Hirayama C, Konno K, Shinbo H. 1997. The pathway of ammonia assimilation in the silkworm. Bombyx mori. Journal of Insect Physiology, 43(10): 959−964. doi: 10.1016/S0022-1910(97)00045-0
    [22] Hu XJ, Wang HW, Li K, Wu YJ, Liu ZF, Huang CL. 2017. Genome-wide proteomic profiling reveals the role of dominance protein expression in heterosis in immature maize ears. Scientific Reports, 7(1): 16130. doi: 10.1038/s41598-017-15985-3
    [23] Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4): 357−360. doi: 10.1038/nmeth.3317
    [24] Klosinska M, Picard CL, Gehring M. 2016. Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. Nature Plants, 2(10): 16145.
    [25] Kong XP, Chen L, Wei TZ, Zhou HW, Bai CF, Yan XP, et al. 2020. Transcriptome analysis of biological pathways associated with heterosis in Chinese cabbage. Genomics, 112(6): 4732−4741. doi: 10.1016/j.ygeno.2020.08.011
    [26] Krieg UC, Johnson AE, Walter P. 1989. Protein translocation across the endoplasmic reticulum membrane: identification by photocross-linking of a 39-kD integral membrane glycoprotein as part of a putative translocation tunnel. The Journal of Cell Biology, 109(5): 2033−2043. doi: 10.1083/jcb.109.5.2033
    [27] Krueger F, Andrews SR. 2011. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27(11): 1571−1572. doi: 10.1093/bioinformatics/btr167
    [28] Lauss K, Wardenaar R, Oka R, Van Hulten MHA, Guryev V, Keurentjes JJB, et al. 2018. Parental DNA methylation states are associated with heterosis in epigenetic hybrids. Plant Physiology, 176(2): 1627−1645. doi: 10.1104/pp.17.01054
    [29] Lester DS, Gilbert LI. 1986. Developmental changes in choline uptake and acetylcholine metabolism in the larval brain of the tobacco hornworm. Manduca sexta. Developmental Brain Research, 26(2): 201−209. doi: 10.1016/0165-3806(86)90284-1
    [30] Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14): 1754−1760. doi: 10.1093/bioinformatics/btp324
    [31] Li H, Yuan JY, Wu M, Han ZP, Li LH, Jiang HM, et al. 2018. Transcriptome and DNA methylome reveal insights into yield heterosis in the curds of broccoli (Brassica oleracea L var. italic). BMC Plant Biology, 18(1): 168. doi: 10.1186/s12870-018-1384-4
    [32] Li JY, Ye LP, Che JQ, Song J, You ZY, Yun KC, et al. 2015. Comparative proteomic analysis of the silkworm middle silk gland reveals the importance of ribosome biogenesis in silk protein production. Journal of Proteomics, 126: 109−120. doi: 10.1016/j.jprot.2015.06.001
    [33] Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY, Tabien R, et al. 2001. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics, 158(4): 1737−1753. doi: 10.1093/genetics/158.4.1737
    [34] Lidén M, Eriksson U. 2006. Understanding retinol metabolism: structure and function of retinol dehydrogenases. Journal of Biological Chemistry, 281(19): 13001−13004. doi: 10.1074/jbc.R500027200
    [35] Lister R, O'malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, et al. 2008. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 133(3): 523–536.
    [36] Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271): 315−322. doi: 10.1038/nature08514
    [37] Liu YJ, Gao SQ, Tang YM, Gong J, Zhang X, Wang YB, et al. 2018. Transcriptome analysis of wheat seedling and spike tissues in the hybrid Jingmai 8 uncovered genes involved in heterosis. Planta, 247(6): 1307−1321. doi: 10.1007/s00425-018-2848-3
    [38] Luo JH, Wang M, Jia GF, He Y. 2021. Transcriptome-wide analysis of epitranscriptome and translational efficiency associated with heterosis in maize. Journal of Experimental Botany, 72(8): 2933−2946. doi: 10.1093/jxb/erab074
    [39] McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, Wittkopp PJ. 2010. Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Research, 20(6): 816−825. doi: 10.1101/gr.102491.109
    [40] Metzler MA, Raja S, Elliott KH, Friedl RM, Tran NQH, Brugmann SA, et al. 2018. RDH10-mediated retinol metabolism and RARα-mediated retinoic acid signaling are required for submandibular salivary gland initiation. Development, 145(15): dev164822.
    [41] Ni M, Li FC, Tian JH, Hu JS, Zhang H, Xu KZ, et al. 2015. Effects of titanium dioxide nanoparticles on the synthesis of fibroin in silkworm (Bombyx mori). Biological Trace Element Research, 166(2): 225−235. doi: 10.1007/s12011-015-0258-y
    [42] Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3): 290−295. doi: 10.1038/nbt.3122
    [43] Qin L, Xia HC, Shi HF, Zhou YJ, Chen L, Yao Q, et al. 2012. Comparative proteomic analysis reveals that caspase-1 and serine protease may be involved in silkworm resistance to Bombyx mori nuclear polyhedrosis virus. Journal of Proteomics, 75(12): 3630−3638. doi: 10.1016/j.jprot.2012.04.015
    [44] Rockenbach MF, Corrêa CCG, Heringer AS, Freitas ILJ, Santa-Catarina C, Do Amaral-Júnior AT, et al. 2018. Differentially abundant proteins associated with heterosis in the primary roots of popcorn. PLoS One, 13(5): e0197114. doi: 10.1371/journal.pone.0197114
    [45] Saeed A, Hoogerland JA, Wessel H, Heegsma J, Derks TGJ, Van Der Veer E, et al. 2020. Glycogen storage disease type 1a is associated with disturbed vitamin A metabolism and elevated serum retinol levels. Human Molecular Genetics, 29(2): 264−273. doi: 10.1093/hmg/ddz283
    [46] Samami R, Seidavi A, Eila N, Moarefi M, Ziaja DJ, Lis JA, et al. 2019. Production performance and economic traits of silkworms (Bombyx mori L., 1758) fed with mulberry tree leaves (Morus alba, var. Ichinose) significantly differ according to hybrid lines. Livestock Science, 226: 133−137. doi: 10.1016/j.livsci.2019.06.015
    [47] Shao L, Xing F, Xu CH, Zhang QH, Che J, Wang XM, et al. 2019. Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proceedings of the National Academy of Sciences of the United States of America, 116(12): 5653−5658. doi: 10.1073/pnas.1820513116
    [48] Sharma K, Bali K. 2019. Analysis of heterosis in some bivoltine silkworm hybrids of Bombyx mori L. Journal of Entomology and Zoology Studies, 7(5): 1−8.
    [49] Shull GH. 1948. What is "heterosis"?. Genetics, 33(5): 439−446. doi: 10.1093/genetics/33.5.439
    [50] Singer MA, Hortsch M, Goodman CS, Bentley D. 1992. Annulin, a protein expressed at limb segment boundaries in the grasshopper embryo, is homologous to protein cross-linking transglutaminases. Developmental Biology, 154(1): 143−159. doi: 10.1016/0012-1606(92)90055-L
    [51] Singh T, Saratchandra B, Murthy GN. 2002. An analysis of heterosis in the silkworm, Bombyx mori (L. ). International Journal of Industrial Entomology, 5(1): 23−32.
    [52] Springer NM, Stupar RM. 2007. Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize. The Plant Cell, 19(8): 2391−2402. doi: 10.1105/tpc.107.052258
    [53] Wang H, Fang Y, Wang LP, Zhu WJ, Ji HP, Wang HY, et al. 2015. Heterosis and differential gene expression in hybrids and parents in Bombyx mori by digital gene expression profiling. Scientific Reports, 5(1): 8750. doi: 10.1038/srep08750
    [54] Wang SH, You ZY, Feng M, Che JQ, Zhang YY, Qian QJ, et al. 2016. Analyses of the molecular mechanisms associated with silk production in silkworm by iTRAQ-based proteomics and RNA-sequencing-based transcriptomics. Journal of Proteome Research, 15(1): 15−28. doi: 10.1021/acs.jproteome.5b00821
    [55] Wang SH, You ZY, Ye LP, Che JQ, Qian QJ, Nanjo Y, et al. 2014. Quantitative proteomic and transcriptomic analyses of molecular mechanisms associated with low silk production in silkworm Bombyx mori. Journal of Proteome Research, 13(2): 735−751. doi: 10.1021/pr4008333
    [56] Wang Y, Gao S, Zhao Y, Chen WH, Shao JJ, Wang NN, et al. 2019. Allele-specific expression and alternative splicing in horse× donkey and cattle× yak hybrids. Zoological Research, 40(4): 293−305. doi: 10.24272/j.issn.2095-8137.2019.042
    [57] Wu XL, Liu Y, Zhang YW, Gu R. 2021. Advances in Research on the Mechanism of Heterosis in Plants. Frontiers in Plant Science, 12: 745726. doi: 10.3389/fpls.2021.745726
    [58] Xiang H, Li X, Dai FY, Xu X, Tan AJ, Chen L, et al. 2013. Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genomics, 14(1): 646. doi: 10.1186/1471-2164-14-646
    [59] Xiang H, Liu XJ, Li MW, Zhu YN, Wang LZ, Cui Y, et al. 2018. The evolutionary road from wild moth to domestic silkworm. Nature Ecology & Evolution, 2(8): 1268−1279.
    [60] Xiang H, Zhu JD, Chen Q, Dai FY, Li X, Li MW, et al. 2010. Single base–resolution methylome of the silkworm reveals a sparse epigenomic map. Nature Biotechnology, 28(5): 516−520. doi: 10.1038/nbt.1626
    [61] Xiao R, Yuan Y, Zhu FF, He SQ, Ge Q, Wang XQ, et al. 2020. Transcriptomics and proteomics-based analysis of heterosis on main economic traits of silkworm. Bombyx mori. Journal of Proteomics, 229: 103941.
    [62] Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, et al. 1997. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proceedings of the National Academy of Sciences of the United States of America, 94(17): 9226−9231. doi: 10.1073/pnas.94.17.9226
    [63] Zhang Y, Tang H, Yang Y, Lü P, Yao Q, Chen K. 2018. Comparative proteomic analysis of the silkworm (Bombyx mori L. ) silk gland reveals yield heterosis. ISJ-Invertebrate Survival Journal, 15(1): 66−82.
    [64] Zhou SR, Xing MQ, Zhao ZL, Gu YC, Xiao YP, Liu QQ, et al. 2021. DNA methylation modification in heterosis initiation through analyzing rice hybrid contemporary seeds. The Crop Journal, 9(5): 1179−1190. doi: 10.1016/j.cj.2020.12.003
  • ZR-2022-065-Supplementary Materials.zip
  • 加载中
图(5)
计量
  • 文章访问数:  772
  • HTML全文浏览量:  367
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-01
  • 录用日期:  2022-06-16
  • 网络出版日期:  2022-06-16
  • 刊出日期:  2022-07-18

目录

    /

    返回文章
    返回