Nucleus accumbens-linked executive control networks mediating reversal learning in tree shrew brain
-
摘要: 认知灵活性对动物的生存至关重要。多种神经精神疾病的患者被发现具有认知灵活性功能障碍。以往的研究已经发现大脑的多个功能网络参与动物的认知灵活性,但这些功能网络之间的协作机制仍不清楚。动物反转学习模型是研究认知灵活性的神经机制常用的实验范式。该研究借助触摸屏实验平台,采用基于视觉辨别的反转学习范式训练19只雄性树鼩完成了学习-反转学习等一系列任务。同时结合18F-FDG正电子发射断层扫描成像,在baseline,learning expert (LE), reversal naive (RN) 和reversal expert (RE) 阶段采集了树鼩的脑代谢图像,以考察实验动物大脑网络的代谢活动在反转学习任务中的模式变化。基于体素的组间差异性分析显示,在RN时期,树鼩左侧伏隔核(Left NAc)的代谢活动显著增加,表明Left NAc是参与树鼩的反转学习过程的关键脑区之一。以Left NAc为种子区构建RN时期树鼩的反转学习网络,该网络主要包含以NAc为关键结构的行为监测系统功能网络和以前额叶皮质(PFC)为关键节点的执行控制系统功能网络。此外,我们还构建了LE和RE时期的代谢网络,用于研究在普通学习状态时大脑的协作模式。LE和RE时期的代谢网络的组成成员几乎是相同的,主要包含了以杏仁核和海马为主的记忆系统和以PFC为主的执行控制系统。因此,反转学习和普通学习过程是由与行为监控、执行控制和记忆系统相关的多个功能网络交互调节的,其中NAc和PFC功能网络可能是作为不同功能网络的连接和启动接口,灵活有效地处理突发和正常情况。#Authors contributed equally to this work
-
Figure 1. Variations in collaborative network patterns during visual discrimination learning and reversal learning (RL) in brains of tree shrews
A: Schematics of visual discrimination tasks and 18F-FDG PET/CT imaging. B: Voxel-wise comparisons between RN and LE stage. Significant hyper-metabolism region was found in left NAc in RN stage (P<0.05, FWE-corrected, cluster size>50). T value, value of two-sample t-test. C: Sub-region location of RL network in tree shrew brain. D: Venn diagram showing overlap of metabolic networks involved in LE, RN, and RE stages. E: Schematic of functional systems engaged in dynamic visual discrimination tasks. LN, learning naive; LE, learning expert; RN, reversal naive; RE, reversal expert. MFC, medial frontal cortex; DFC, dorsal frontal cortex; Cg, cingulate cortex; OFC, orbital frontal cortex; TC, temporal cortex; RSg, retrosplenial granular cortex; Pir, piriform cortex; PPC, posterior parietal cortex; SMC, sensorimotor cortex; VC, visual cortex; AuC, auditory cortex; Ent, entorhinal cortex; Ins, insular cortex; PRh, perirhinal cortex; PrS, presubiculum; Hip, hippocampus; Amy, amygdala; IC, inferior colliculus; SC, superior colliculus; NAc, accumbens nucleus; Cl, claustrum; Str, striatum; Cb, cerebellum. L, left hemisphere; R, right hemisphere.
-
[1] Floresco SB. 2015. The nucleus accumbens: An interface between cognition, emotion, and action. Annual Review of Psychology, 66: 25−52. doi: 10.1146/annurev-psych-010213-115159 [2] Güntürkün O, Ströckens F, Ocklenburg S. 2020. Brain lateralization: a comparative perspective. Physiological Reviews, 100(3): 1019−1063. doi: 10.1152/physrev.00006.2019 [3] Hamson DK, Roes MM, Galea LAM. 2016. Sex hormones and cognition: Neuroendocrine influences on memory and learning. Comprehensive Physiology, 6(3): 1295−1337. [4] Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A. 2017. The neural basis of reversal learning: an updated perspective. Neuroscience, 345: 12−26. doi: 10.1016/j.neuroscience.2016.03.021 [5] Mar AC, Horner AE, Nilsson SRO, Alsiö J, Kent BA, Kim CH, et al. 2013. The touchscreen operant platform for assessing executive function in rats and mice. Nature Protocols, 8(10): 1985−2005. doi: 10.1038/nprot.2013.123 [6] Menon V, D'Esposito M. 2022. The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology, 47(1): 90−103. doi: 10.1038/s41386-021-01152-w [7] Mustafar F, Harvey MA, Khani A, Arató J, Rainer G. 2018. Divergent solutions to visual problem solving across mammalian species. eNeuro, 5(4): ENEURO.0167−18.2018. [8] Schumacher JW, McCann M, Maximov KJ, Fitzpatrick D. 2021. Selective enhancement of neural coding in V1 underlies fine discrimination learning in tree shrew. bioRxiv,doi: 10.1101/2021.01.10.426145. [9] Uddin LQ. 2021. Cognitive and behavioural flexibility: neural mechanisms and clinical considerations. Nature Reviews Neuroscience, 22(3): 167−179. doi: 10.1038/s41583-021-00428-w [10] Yakushev I, Drzezga A, Habeck C. 2017. Metabolic connectivity: methods and applications. Current Opinion in Neurology, 30(6): 677−685. doi: 10.1097/WCO.0000000000000494 [11] Yao YG. 2017. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 38(3): 118−126. doi: 10.24272/j.issn.2095-8137.2017.032 -
ZR-2022-063 Supplementary Materials.pdf
-