-
摘要: 精子发生是由雄性生殖细胞的前体产生精子的过程。出生后,前精原细胞(ProSG)产生精原干细胞(SSCs),通过高度协调的复杂步骤分化为单倍体精子。已经对啮齿动物的这些不同步骤进行了大量研究。该研究通过10×genomics单细胞测序(scRNA-seq)分析新生儿,青少年和成人睾丸,揭示了分化轨迹中的关键发育转变。确定了两种类型的前精原细胞、七种类型的精原细胞、四种类型的精母细胞和九种类型的精子细胞。该研究证明了SSC建立在出生后30天,并且CDH1是ProSG和未分化精原细胞的新型细胞表面标志物。此外,综合分析揭示了猪与人之间精子发生的相似性。该研究首次通过scRNA-seq分析了猪睾丸发育过程中雄性生殖细胞的转录组。记录了猪生殖细胞的发育和详细分类。提供了猪睾丸发育时间的重大进展以及与多种分析模式相结合的基础数据资源。#Authors contributed equally to this work
-
Figure 1. Single-cell RNA sequencing reveals atlas of germ cell development in porcine testes
A: Hematoxylin and eosin staining of testes from different ages revealed typical changes in morphology and cell types during puberty. Scale bar: 50 μm. B: t-SNE plot showing 9 307 germ cells (colored by three broad cell types: ProSG & spermatogonia, spermatocytes, and spermatids). C: t-SNE plot showing different substages of ProSG and spermatogonia (T1-ProSG, T2-ProSG, Undiff1, Undiff2, Undiff3, E-diff1, E-diif2, Mid diff, and Late diff). D: Expression of marker genes in ProSG and spermatogonia. Track-plot showing expression of genes at single-cell level, bars represent individual cells, colored according to cell type. Upper limits for y-axis are different for each track. E: Cell ratios of T1-ProSG and T2-ProSG during testicular development. F: Quantification of PCNA+ T1-ProSG and T2-ProSG at different ages. Data are mean±standard deviation (SD) of independent experiments. P-value was calculated via Student’s t-test. G: t-SNE plot showing spermatocyte cell types (Lep, Zyg, Pachy, Dip, & Sec). H: Track-plot showing marker gene expression of spermatocyte subgroups. I: t-SNE plot showing identified spermatid cell types (Early-RS1, Early-RS2, Early-RS3, Mid-RS, Late-RS, Early-ES, Mid-ES, Late-ES, and Sperm). J: Track-plot showing marker gene expression of spermatid subgroups. K: t-SNE plot showing overall classification of porcine germ cells. L: t-SNE plot showing developmental trajectories in pseudotime. M: Model of germ cell development during puberty, see text for details.
-
[1] Fayomi AP, Orwig KE. 2018. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Research, 29: 207−214. doi: 10.1016/j.scr.2018.04.009 [2] França LR, Silva VA Jr, Chiarini-Garcia H, Garcia SK, Debeljuk L. 2000. Cell proliferation and hormonal changes during postnatal development of the testis in the pig. Biology of Reproduction, 63(6): 1629−1636. doi: 10.1095/biolreprod63.6.1629 [3] Law NC, Oatley JM. 2020. Developmental underpinnings of spermatogonial stem cell establishment. Andrology, 8(4): 852−861. doi: 10.1111/andr.12810 [4] Nestorowa S, Hamey FK, Sala BP, Diamanti E, Shepherd M, Laurenti E, et al. 2016. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood, 128(8): e20−e31. doi: 10.1182/blood-2016-05-716480 [5] Park HJ, Lee WY, Park C, Hong K, Song H. 2019. CD14 is a unique membrane marker of porcine spermatogonial stem cells, regulating their differentiation. Scientific Reports, 9(1): 9980. doi: 10.1038/s41598-019-46000-6 [6] Perleberg C, Kind A, Schnieke A. 2018. Genetically engineered pigs as models for human disease. Disease Models & Mechanisms, 11(1): dmm030783. [7] Tan K, Song HW, Wilkinson MF. 2020. Single-cell RNAseq analysis of testicular germ and somatic cell development during the perinatal period. Development, 147(3): dev183251. [8] Turner JMA. 2007. Meiotic sex chromosome inactivation. Development, 134(10): 1823−1831. doi: 10.1242/dev.000018 [9] Zhang LK, Li FY, Lei PP, Guo M, Liu RF, Wang L, et al. 2021. Single-cell RNA-sequencing reveals the dynamic process and novel markers in porcine spermatogenesis. Journal of Animal Science and Biotechnology, 12(1): 122. doi: 10.1186/s40104-021-00638-3 [10] Zhang PF, Li FY, Zhang LK, Lei PP, Zheng Y, Zeng WX. 2020. Stage-specific embryonic antigen 4 is a membrane marker for enrichment of porcine spermatogonial stem cells. Andrology, 8(6): 1923−1934. doi: 10.1111/andr.12870 -
ZR-2022-037-Supplementary Materials.pdf
-