-
摘要: 作为典型的竹林隐士,一般认为,大熊猫喜欢生活在植被较好的森林。因此,在制定保护政策时常侧重于提高其栖息地内的植被覆盖度,以维持更大的种群数量。然而,高植被覆盖度是否与高大熊猫种群密度存在必然联系,却一直没有研究证实。该研究分析了2001~2011年岷山、邛崃山、大相岭、小相岭、凉山等山系植被覆盖度与大熊猫活动位点的联系,以及气候因素(降雨量和温度)和归一化植被指数(NDVI)的变化及相关性。结果表明,尽管大相岭山系高植被覆盖度比例最高(65.67%),但其大熊猫种群密度较低(0.0309只/km2);同时,在高风险小种群(n<15)分布区域也呈现出相同趋势,比如高植被覆盖度比例为96.01%的小种群密度(0.0298只/km2)远低于高植被覆盖度比例为84.25%的小种群(0.0609只/km2)。此外,在五大山系中,NDVI和气候因子呈现下降趋势,且它们之间没有显著相关性,但高植被覆盖率的比例增加,五大山系中仅大相岭山系的植被生长与气候因子存在显著相关性。这表明我们的研究结果与之前的共识相反,即使某个区域具有最高比例的高植被覆盖度,并不意味着大熊猫的密度最高。显然,需要进行更多的研究,为现行的管理提供科学依据来促进大熊猫种群增长。
-
Figure 1. Study area, relationship between vegetation coverage and precipitation and temperature, spatiotemporal changes in vegetation coverage, and relationship between panda density and vegetation coverage
A: Study area in Sichuan Province, China (Green areas indicate isolated populations of giant pandas according to the Fourth National Survey on Giant Pandas. Names of isolated populations are in black; high-risk subpopulation (<15 pandas) areas are shaded in yellow). B: Changes in average precipitation (A) and temperature (B) in study area from 2001 to 2011 (Broken line shows change from 2001 to 2011 and dotted line shows trend from 2001 to 2011. Short line on left shows trend from 2001 to 2005 and short line on right shows trend from 2006 to 2011). C: Average precipitation and temperature in different mountain areas from 2001 to 2011. D: Spatial variation in NDVI slope (A) and correlation between vegetation growth and climate factors; (B) precipitation and NDVI; and (C) temperature and NDVI. E: Vegetation change in time-series NDVI from 2001 to 2011 (Broken line shows change from 2001 to 2011 and dotted line shows trend from 2001 to 2011. Short line on left shows trend from 2001 to 2005 and short line on right shows trend from 2006 to 2011). F: Relationship between panda density and change in land use type and panda density and change in vegetation coverage, respectively. Change in proportion of land use type (A) and different classes of vegetation coverage (B) in different mountains from 2001 to 2011 and panda density (top of X-axis). (Note: whole study range). G: Relationship between panda density and land use type and panda density and vegetation coverage in 2011. Proportion of land use type (A), different classes of vegetation coverage (B), and density of high-risk isolated populations (top of X-axis). H: Relationship between panda density and land use type and panda density and vegetation coverage in 2001. Proportion of land use type (A), different classes of vegetation coverage (B), and density of high-risk isolated populations (top of X-axis).
-
[1] Boone RB, Thirgood SJ, Hopcraft JGC. 2006. Serengeti wildebeest migratory patterns modeled from rainfall and new vegetation growth. Ecology, 87(8): 1987−1994. doi: 10.1890/0012-9658(2006)87[1987:SWMPMF]2.0.CO;2 [2] Hull V, Zhang JD, Huang JY, Zhou SQ, Viña A, Shortridge A, et al. 2016. Habitat use and selection by giant pandas. PLoS One, 11(9): e0162266. doi: 10.1371/journal.pone.0162266 [3] Lai XL, Zhou WL, Gao HL, Wang M, Gao K, Zhang BW, et al. 2020. Impact of sympatric carnivores on den selection of wild giant pandas. Zoological Research, 41(3): 273−280. doi: 10.24272/j.issn.2095-8137.2020.027 [4] Li DQ, Lu DS, Zhao Y, Zhou MX, Chen GS. 2021. Spatial patterns of vegetation coverage change in giant panda habitat based on MODIS time-series observations and local indicators of spatial association. Ecological Indicators, 124: 107418. doi: 10.1016/j.ecolind.2021.107418 [5] Qi DW, Hu YB, Gu XD, Yang XY, Yang G, Wei FW. 2012. Quantifying landscape linkages among giant panda subpopulations in regional scale conservation. Integrative Zoology, 7(2): 165−174. doi: 10.1111/j.1749-4877.2012.00281.x [6] Qin SS. 2020. Analysis of the Microclimate Difference in Old-Growth Forest and Secondary Forest of Giant Pandas' Habitat--A Case Study of Liziping National Nature Reserve, China. Ph. D. Dissertation, China West Normal University. (in Chinese) [7] State Forestry Administration. 2015. Results of the Fourth National Survey on the Giant Panda. Beijing. URL: http://www.forestry.gov.cn/main/58/content-743293.html. [8] Tuanmu MN, Viña A, Winkler JA, Li Y, Xu WH, Ouyang ZY, et al. 2013. Climate-change impacts on understorey bamboo species and giant pandas in China's Qinling Mountains. Nature Climate Change, 3(3): 249−253. doi: 10.1038/nclimate1727 [9] Wei FW, Costanza R, Dai Q, Stoeckl N, Gu XD, Farber S, et al. 2018a. The value of ecosystem services from giant panda reserves. Current Biology, 28(13): 2174−2180.e7. doi: 10.1016/j.cub.2018.05.046 [10] Wei W, Swaisgood RR, Dai Q, Yang ZS, Yuan SB, Owen MA, et al. 2018b. Giant panda distributional and habitat-use shifts in a changing landscape. Conservation Letters, 11(6): e12575. doi: 10.1111/conl.12575 [11] Wei W, Swaisgood RR, Owen MA, Pilfold NW, Han H, Hong MS, et al. 2019. The role of den quality in giant panda conservation. Biological Conservation, 231: 189−196. doi: 10.1016/j.biocon.2018.12.031 [12] Yang B, Qin SY, Xu WS, Busch J, Yang XY, Gu XD, et al. 2020. Gap analysis of giant panda conservation as an example for planning China's national park system. Current Biology, 30(7): 1287−1291.e2. doi: 10.1016/j.cub.2020.01.069 [13] Zang ZH, Deng SY, Ren GF, Zhao ZX, Li JQ, Xie ZQ, et al. 2020. Climate-induced spatial mismatch may intensify giant panda habitat loss and fragmentation. Biological Conservation, 241: 108392. doi: 10.1016/j.biocon.2019.108392 [14] Zhang ZJ, Hu JC. 2000. A study on the giant panda's habitat selection. Journal of Sichuan Teachers College:Natural Science, 21(1): 18−21. (in Chinese) -
ZR-2022-005 Supplementary Materials.pdf
-