留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ecological study of cave nectar bats reveals low risk of direct transmission of bat viruses to humans

Kai Zhao Wei Zhang Bei Li Shi-Zhe Xie Fan Yi Ren-Di Jiang Yun Luo Xiang-Yang He Yun-Zhi Zhang Zheng-Li Shi Li-Biao Zhang Xing-Lou Yang

Kai Zhao, Wei Zhang, Bei Li, Shi-Zhe Xie, Fan Yi, Ren-Di Jiang, Yun Luo, Xiang-Yang He, Yun-Zhi Zhang, Zheng-Li Shi, Li-Biao Zhang, Xing-Lou Yang. Ecological study of cave nectar bats reveals low risk of direct transmission of bat viruses to humans. Zoological Research, 2022, 43(4): 514-522. doi: 10.24272/j.issn.2095-8137.2021.480
Citation: Kai Zhao, Wei Zhang, Bei Li, Shi-Zhe Xie, Fan Yi, Ren-Di Jiang, Yun Luo, Xiang-Yang He, Yun-Zhi Zhang, Zheng-Li Shi, Li-Biao Zhang, Xing-Lou Yang. Ecological study of cave nectar bats reveals low risk of direct transmission of bat viruses to humans. Zoological Research, 2022, 43(4): 514-522. doi: 10.24272/j.issn.2095-8137.2021.480

蝙蝠生态学研究表明长舌果蝠携带病毒直接传播给人类的风险较低

doi: 10.24272/j.issn.2095-8137.2021.480

Ecological study of cave nectar bats reveals low risk of direct transmission of bat viruses to humans

Funds: This study was supported by the National Natural Science Foundation of China (31727901 to Z.L.S.), Key Program of the Chinese Academy of Sciences (KJZD-SW-L11 to Z.L.S.), Guangdong Province Natural Resources Services (Ecological Forestry Construction) Special Fund in 2021 (to L.B.Z.), and Youth Innovation Promotion Association of CAS (2019328 to X.L.Y.)
More Information
  • 摘要: 蝙蝠被认为是多种病毒的宿主。广泛分布的长舌果蝠(Eonycteris spelaea)被报道携带有丝状病毒和冠状病毒。但这些蝙蝠病毒向人类传播的风险尚缺乏相关研究。该研究使用微型GPS设备对中国云南勐腊地区的16只长舌果蝠进行追踪,以调查蝙蝠活动与人类活动时空重叠情况。并通过对蝙蝠肛拭子的病毒核酸检测明确了勐腊病毒(MLAV)和两种冠状病毒(GCCDC1-CoV和HKU9-CoV)在研究区域内长舌果蝠中的流行情况。通过病毒血清学检测,暂未发现周边居民的血清样本中含有针对这些蝙蝠病毒的抗体。GPS追踪数据显示,长舌果蝠白天在洞内栖息夜间外出觅食,且很少飞到居民区,蝙蝠活动与人类活动时空重叠性低。此外,长舌果蝠个体觅食区域和范围各不相同,夜间平均累计飞行距离为25.50公里,飞行速度最大可达57.4公里/小时。研究结果表明,在勐腊地区GCCDC1-CoV、HKU9-CoV和MLAV从长舌果蝠直接传播到人类的风险非常低。
  • Figure  1.  Flight map of 14 out of 16 bats tagged with GPS-loggers

    Figure  2.  Simulation map of bat home range. Left: bat home range simulated by MCP

    Right: Bat home range simulated by KDE. Blue: Home range of Tianshengqiao Cave bats. Green: Home range of Daoba Cave bats. Orange: Overlapping home range of both bat colonies.

    Figure  3.  GPS localization of bats in different areas (left) and percentage of two bat colonies in different areas

    Figure  4.  Temporal pattern of bat activity

    A: Activity of Daoba Cave bats. B: Activity of Tianshengqiao Cave bats.

    Figure  5.  Serological test results of people residing near bat colonies

    A: Seroprevalence of GCCDC1-CoV, HKU9-CoV, and MLAV in individuals examined. B: Locations of serum sampling sites.

    Table  1.   Summary of bat and GPS-logger data

    CaveGPS IDSexGPS-logger weight
    (g)
    Bat weight
    (g)
    GPS-logger weight rate
    (%)
    No. of nights tracked (n)AGP/ADP
    Tianshengqiao
    Cave
    GPS01M*3.58457.96872/100
    GPS02F*3.53408.83748/92
    GPS03F3.6635.71
    GPS04M3.61834.35640/77
    GPS05M3.66754.88645/77
    GPS06M3.67824.48534/61
    GPS07M3.64784.67635/76
    GPS08M3.63804.54310/21
    Daoba CaveGPS09M3.6785.14.31635/70
    GPS10F3.5769.35.1511/2
    GPS11F3.5463.25.60655/80
    GPS12M3.6285.54.23417/48
    GPS13M3.6678.44.67218/188
    GPS14M3.6780.84.54212/25
    GPS15F3.5567.75.2415/8
    GPS16M3.56824.34761/90
    M: Male. F: Female. *: Subadult bats. AGP: Accumulated GPS points, which contain GPS information and other essential information; ADP: Accumulated data points, which contain only essential information. –: Not available.
    下载: 导出CSV

    Table  2.   Bat flight distance and speed.

    CaveGPS IDMean (min, max) nightly cumulative distance (km)Mean (min, max) speed (km/h)100% (95%, 90%)
    MCP (km2)
    95% (90%, 50%)
    KDE (km2)
    Maximum foraging distance (km)
    Tianshengqiao CaveGPS0114.23
    (0.54, 42.36)
    17.63
    (1.5, 38.3)
    44.18
    (12.56, 0.11)
    42.47
    (25.52, 5.53)
    30.2
    GPS0216.56
    (0.68, 33.51)
    18.21
    (1.5, 43.2)
    87.51
    (49.66, 23.52)
    181.20
    (134.04, 30.41)
    20.7
    GPS0484.3
    (62.33, 102.63)
    22.75
    (1.6, 45.5)
    494.34
    (489.8, 417.32)
    2 337.78
    (1 867.12, 541.07)
    89.9
    GPS0510.41
    (0.27, 28.21)
    20.92
    (1.6, 57.4)
    34.54
    (0.66, 0.11)
    27.5
    (16.84, 4.18)
    13.4
    GPS0627.08
    (7.65, 52.48)
    22.29
    (1.9, 37.1)
    22.22
    (12.07, 10.36)
    303.92
    (234.51, 46.03)
    21.5
    GPS0714.95
    (0.23, 35.29)
    17.83
    (1.5, 35.9)
    10.63
    (8.23, 0.45)
    94.23
    (59.99, 12.15)
    23.2
    GPS084.97
    (0.03, 11.75)
    12.80
    (4.4, 24.9)
    0.09
    (0.09, 0.006)
    4.61
    (3.3, 0.74)
    14.4
    Daoba CaveGPS097.75
    (0.69, 18.98)
    12.40
    (1.9, 31.9)
    26.77
    (11.95, 0.33)
    29.63
    (23.31, 6.33)
    12.7
    GPS1014.84
    (14.84, 14.84)
    33.20
    (33.2, 33.2)
    14.8
    GPS1190.71
    (62.97, 132.18)
    27.89
    (1.5, 49.1)
    780.05
    (431.39, 277.97)
    2 905.13
    (2 196.41, 504.88)
    51.8
    GPS126.36
    (0.09, 18.84)
    22.97
    (9.5, 32.6)
    0.54
    (0.54, 0.05)
    9.32
    (6.51, 1.59)
    13.3
    GPS1317.12
    (7.12, 27.13)
    15.31
    (1.9, 34.2)
    0.67
    (0.67, 0.39)
    43.96
    (34.23, 7.28)
    6.9
    GPS1417.2
    (5.65, 28.74)
    15.08
    (2.3, 27.3)
    0.40
    (0.40, 0.001)
    112.46
    (80.08, 18.52)
    12.1
    GPS1513.7
    (13.7, 13.7)
    3.75
    (3.4, 4.1)
    0.0005
    (0.0005, 0.0005)
    0.06
    (0.054, 0.014)
    13.1
    GPS164.79
    (0.37, 18.85)
    14.93
    (1.5, 40.4)
    4.88
    (0.67, 0.07)
    12.75
    (8.09, 1.75)
    11.9
    MCP: Minimum convex polygon. KDE: Kernel density estimates. –: Not available.
    下载: 导出CSV

    Table  3.   Virus positive rates in E. spelaea bats

    DateSampling siteVirus RNA prevalence
    GCCDC1-CoVHKU9-CoVMLAV
    2019/1/13Daoba Cave9/30 (30.0%)0/30 (0.0%)0/30 (0.0%)
    2019/6/4Daoba Cave5/39 (12.8%)0/39 (0.0%)0/39 (0.0%)
    2019/12/25Daoba Cave0/35 (0.0%)0/35 (0.0%)0/35 (0.0%)
    2019/12/28Tianshengqiao Cave3/29 (10.3%)0/29 (0.0%)0/29 (0.0%)
    Total17/133 (12.8%)0/133 (0.0%)0/133 (0.0%)
    GCCDC1-CoV: GCCDC1 coronavirus; HKU9-CoV: HKU9 coronavirus; MLAV: Měnglà virus. –: Not available.
    下载: 导出CSV
  • [1] Acharya PR, Racey PA, Sotthibandhu S, Bumrungsri S. 2015. Home-range and foraging areas of the dawn bat Eonycteris spelaea in agricultural areas of thailand. Acta Chiropterologica, 17(2): 307−319. doi: 10.3161/15081109ACC2015.17.2.006
    [2] Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C, Di Marco M, et al. 2017. Global hotspots and correlates of emerging zoonotic diseases. Nature Communications, 8(1): 1124. doi: 10.1038/s41467-017-00923-8
    [3] Amman BR, Bird BH, Bakarr IA, Bangura J, Schuh AJ, Johnny J, et al. 2020. Isolation of Angola-like marburg virus from egyptian rousette bats from West Africa. Nature Communications, 11(1): 510. doi: 10.1038/s41467-020-14327-8
    [4] Anthony SJ, Gilardi K, Menachery VD, Goldstein T, Ssebide B, Mbabazi R, et al. 2017. Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus. mBio, 8(2): e00373−17.
    [5] Baíllo A, Chacón JE. 2021. Statistical outline of animal home ranges: an application of set estimation. Handbook of Statistics, 44: 3–37.
    [6] Boyle SA, Lourenço WC, da Silva LR, Smith AT. 2009. Home range estimates vary with sample size and methods. Folia Primatologica, 80(1): 33−42.
    [7] Bumrungsri S, Lang DC, Harrower C, Sripaoraya E, Kitpipit K, Racey PA. 2013. The dawn bat, Eonycteris spelaea dobson (chiroptera: pteropodidae) feeds mainly on pollen of economically important food plants in Thailand. Acta Chiropterologica, 15(1): 95−104. doi: 10.3161/150811013X667894
    [8] Castle KT, Weller TJ, Cryan PM, Hein CD, Schirmacher MR. 2015. Using sutures to attach miniature tracking tags to small bats for multimonth movement and behavioral studies. Ecology and Evolution, 5(14): 2980−2989. doi: 10.1002/ece3.1584
    [9] Chen L, Liu B, Yang J, Jin Q. 2014. DBatVir: the database of bat-associated viruses. Database (Oxford), 2014: bau021. doi: 10.1093/database/bau021
    [10] Choden K, Ravon S, Epstein JH, Hoem T, Furey N, Gely M, et al. 2019. Pteropus lylei primarily forages in residential areas in Kandal, Cambodia. Ecology and Evolution, 9(7): 4181−4191. doi: 10.1002/ece3.5046
    [11] Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, et al. 2002. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes and Infection, 4(2): 145−151. doi: 10.1016/S1286-4579(01)01522-2
    [12] Dovih P, Laing ED, Chen YH, Low DHW, Ansil BR, Yang X, et al. 2019. Filovirus-reactive antibodies in humans and bats in Northeast India imply zoonotic spillover. PLOS Neglected Tropical Diseases, 13(10): e0007733. doi: 10.1371/journal.pntd.0007733
    [13] Egert-Berg K, Hurme ER, Greif S, Goldstein A, Harten L, Herrera MLG, et al. 2018. Resource ephemerality drives social foraging in bats. Current Biology, 28(22): 3667−3673.e5. doi: 10.1016/j.cub.2018.09.064
    [14] Fahr J, Abedi-Lartey M, Esch T, Machwitz M, Suu-Ire R, Wikelski M, et al. 2015. Pronounced seasonal changes in the movement ecology of a highly gregarious central-place forager, the african straw-coloured fruit bat (Eidolon helvum). PLoS One, 10(10): e0138985. doi: 10.1371/journal.pone.0138985
    [15] Fauci AS, Morens DM. 2012. The perpetual challenge of infectious diseases. New England Journal of Medicine, 366(5): 454−461. doi: 10.1056/NEJMra1108296
    [16] Francis C, Rosell-Ambal G, Tabaranza B, Carino P, Helgen K, Molur S, et al. 2008. Eonycteris Spelaea (The IUCN Red List of Threatened Species 2008: e. T7787A12850087. ). International Union for Conservation of Nature.
    [17] Gao FL, Liu XW, Du ZG, Hou H, Wang XY, Wang FL, et al. 2019. Bayesian phylodynamic analysis reveals the dispersal patterns of tobacco mosaic virus in China. Virology, 528: 110−117. doi: 10.1016/j.virol.2018.12.001
    [18] Ge XY, Li JL, Yang XL, Chmura AA, Zhu GJ, Epstein JH, et al. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503(7477): 535−538. doi: 10.1038/nature12711
    [19] Getz WM, Fortmann-Roe S, Cross PC, Lyons AJ, Ryan SJ, Wilmers CC. 2007. LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS One, 2(2): e207. doi: 10.1371/journal.pone.0000207
    [20] Halpin K, Young PL, Field HE, Mackenzie JS. 2000. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. Journal of General Virology, 81(8): 1927−1932. doi: 10.1099/0022-1317-81-8-1927
    [21] Hayne DW. 1949. Calculation of size of home range. Journal of Mammalogy, 30(1): 1−18. doi: 10.2307/1375189
    [22] Heideman PD, Heaney LR. 1989. Population biology and estimates of abundance of fruit bats (Pteropodidae) in Philippine submontane rainforest. Journal of Zoology, 218(4): 565−586. doi: 10.1111/j.1469-7998.1989.tb04999.x
    [23] Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, et al. 2017. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog, 13(11): e1006698. doi: 10.1371/journal.ppat.1006698
    [24] Huang CP, Liu WJ, Xu W, Jin T, Zhao YZ, Song JD, et al. 2016. A bat-derived putative cross-family recombinant coronavirus with a reovirus gene. PLoS Pathog, 12(9): e1005883. doi: 10.1371/journal.ppat.1005883
    [25] Hurme E, Gurarie E, Greif S, Herrera MLG, Flores-Martínez JJ, Wilkinson GS, et al. 2019. Acoustic evaluation of behavioral states predicted from GPS tracking: a case study of a marine fishing bat. Movement Ecology, 7: 21. doi: 10.1186/s40462-019-0163-7
    [26] Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. 2008. Global trends in emerging infectious diseases. Nature, 451(7181): 990−993. doi: 10.1038/nature06536
    [27] Kitchener DJ, Gunnell A, Maharadatunkamsi. 1990. Aspects of the feeding biology of fruit bats (Pteropodidae) on Lombok Island, Nusa Tenggara, Indonesia. Mammalia, 54(4): 561−578.
    [28] Latinne A, Hu B, Olival KJ, Zhu GJ, Zhang LB, Li HY, et al. 2020. Origin and cross-species transmission of bat coronaviruses in China. Nature Communications, 11(1): 4235. doi: 10.1038/s41467-020-17687-3
    [29] Li HY, Mendelsohn E, Zong C, Zhang W, Hagan E, Wang N, et al. 2019. Human-animal interactions and bat coronavirus spillover potential among rural residents in Southern China. Biosafety and Health, 1(2): 84−90. doi: 10.1016/j.bsheal.2019.10.004
    [30] Li WD, Shi ZL, Yu M, Ren WZ, Smith C, Epstein JH, et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science, 310(5748): 676−679. doi: 10.1126/science.1118391
    [31] Loh EH, Zambrana-Torrelio C, Olival KJ, Bogich TL, Johnson CK, Mazet JAK, et al. 2015. Targeting transmission pathways for emerging zoonotic disease surveillance and control. Vector-Borne and Zoonotic Diseases, 15(7): 432−437. doi: 10.1089/vbz.2013.1563
    [32] Luo Y, Li B, Jiang RD, Hu BJ, Luo DS, Zhu GJ, et al. 2018. Longitudinal surveillance of betacoronaviruses in fruit bats in Yunnan province, China during 2009–2016. Virologica Sinica, 33(1): 87−95. doi: 10.1007/s12250-018-0017-2
    [33] Meng FJ, Wang X, Batbayar N, Natsagdorj T, Davaasuren B, Damba I, et al. 2020. Consistent habitat preference underpins the geographically divergent autumn migration of individual Mongolian common shelducks. Current Zoology, 66(4): 355−362. doi: 10.1093/cz/zoz056
    [34] Mishra PK, Rai A, Rai SC. 2020. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. The Egyptian Journal of Remote Sensing and Space Science, 23(2): 133−143. doi: 10.1016/j.ejrs.2019.02.001
    [35] Mohr CO. 1947. Table of equivalent populations of North American small mammals. The American Midland Naturalist, 37(1): 223−249. doi: 10.2307/2421652
    [36] O'Mara MT, Wikelski M, Dechmann DKN. 2014. 50 years of bat tracking: device attachment and future directions. Methods in Ecology and Evolution, 5(4): 311−319. doi: 10.1111/2041-210X.12172
    [37] Oleksy R, Giuggioli L, McKetterick TJ, Racey PA, Jones G. 2017. Flying foxes create extensive seed shadows and enhance germination success of pioneer plant species in deforested Madagascan landscapes. PLoS One, 12(9): e0184023. doi: 10.1371/journal.pone.0184023
    [38] Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. 2017. Host and viral traits predict zoonotic spillover from mammals. Nature, 546(7660): 646−650. doi: 10.1038/nature22975
    [39] Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, et al. 2017. Pathways to zoonotic spillover. Nature Reviews Microbiology, 15(8): 502−510. doi: 10.1038/nrmicro.2017.45
    [40] Randhawa N, Bird BH, VanWormer E, Sijali Z, Kilonzo C, Msigwa A, et al. 2020. Fruit bats in flight: a look into the movements of the ecologically important Eidolon helvum in Tanzania. One Health Outlook, 2(1): 16. doi: 10.1186/s42522-020-00020-9
    [41] Sikes RS, The Animal Care and Use Committee of the American Society of Mammalogists. 2016. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy, 97(3): 663−688. doi: 10.1093/jmammal/gyw078
    [42] Sikes RS, Bryan II JA. 2016. Institutional animal care and use committee considerations for the use of wildlife in research and education. ILAR Journal, 56(3): 335−341. doi: 10.1093/ilar/ilv071
    [43] Srithongchuay T, Bumrungsri S, Sripao-Raya E. 2008. The pollination ecology of the late-successional tree, Oroxylum indicum (Bignoniaceae) in Thailand. Journal of Tropical Ecology, 24(5): 477−484. doi: 10.1017/S026646740800521X
    [44] Tan CW, Yang X, Anderson DE, Wang LF. 2021. Bat virome research: the past, the present and the future. Current Opinion in Virology, 49: 68−80. doi: 10.1016/j.coviro.2021.04.013
    [45] Temmam S, Vongphayloth K, Baquero E, Munier S, Bonomi M, Regnault B, et al. 2022. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature, 604(7905): 330−336. doi: 10.1038/s41586-022-04532-4
    [46] Thavry H, Cappelle J, Bumrungsri S, Thona L, Furey NM. 2017. The diet of the cave nectar bat (Eonycteris spelaea dobson) suggests it pollinates economically and ecologically significant plants in southern cambodia. Zoological Studies, 56: e17.
    [47] Towner JS, Amman BR, Sealy TK, Carroll SAR, Comer JA, Kemp A, et al. 2009. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathogens, 5(7): e1000536. doi: 10.1371/journal.ppat.1000536
    [48] Wacharapluesadee S, Tan CW, Maneeorn P, Duengkae P, Zhu F, Joyjinda Y, et al. 2021. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nature Communications, 12(1): 972. doi: 10.1038/s41467-021-21240-1
    [49] Wang N, Li SY, Yang XL, Huang HM, Zhang YJ, Guo H, et al. 2018. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virologica Sinica, 33(1): 104−107. doi: 10.1007/s12250-018-0012-7
    [50] Weller TJ, Castle KT, Liechti F, Hein CD, Schirmacher MR, Cryan PM. 2016. First direct evidence of long-distance seasonal movements and hibernation in a Migratory Bat. Scientific Reports, 6: 34585. doi: 10.1038/srep34585
    [51] Wong G, Bi YH, Wang QH, Chen XW, Zhang ZG, Yao YG. 2020. Zoonotic origins of human coronavirus 2019 (HCoV-19/SARS-CoV-2): why is this work important?. Zoological Research, 41(3): 213−219. doi: 10.24272/j.issn.2095-8137.2020.031
    [52] Worton BJ. 1989. Kernel methods for estimating the utilization distribution in home‐range studies. Ecology, 70(1): 164−168. doi: 10.2307/1938423
    [53] Yadav PD, Shete-Aich A, Nyayanit DA, Pardeshi P, Majumdar T, Balasubramanian R, et al. 2020. Detection of coronaviruses in Pteropus & Rousettus species of bats from different States of India. Indian Journal of Medical Research, 151(2-3): 226−235.
    [54] Yang XL, Tan CW, Anderson DE, Jiang RD, Li B, Zhang W, et al. 2019. Characterization of a filovirus (Měnglà virus) from Rousettus bats in China. Nature Microbiology, 4(3): 390−395. doi: 10.1038/s41564-018-0328-y
    [55] Yang XL, Zhang YZ, Jiang RD, Guo H, Zhang W, Li B, et al. 2017. Genetically diverse filoviruses in Rousettus and Eonycteris spp. Bats, China, 2009 and 2015. Emerging Infectious Diseases, 23(3): 482−486. doi: 10.3201/eid2303.161119
    [56] Yu H, Wang X, Cao L, Zhang L, Jia Q, Lee H, et al. 2017. Are declining populations of wild geese in China 'prisoners' of their natural habitats?. Current Biology, 27(10): R376−R377. doi: 10.1016/j.cub.2017.04.037
    [57] Zhou H, Chen X, Hu T, Li J, Song H, Liu YR, et al. 2020a. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Current Biology, 30(11): 2196−2203.e3. doi: 10.1016/j.cub.2020.05.023
    [58] Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. 2020b. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798): 270−273. doi: 10.1038/s41586-020-2012-7
  • ZR-2021-480 Supplementary Materials.pdf
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1693
  • HTML全文浏览量:  797
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-05
  • 录用日期:  2022-05-10
  • 网络出版日期:  2022-05-17
  • 刊出日期:  2022-07-18

目录

    /

    返回文章
    返回