留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lower respiratory tract samples are reliable for severe acute respiratory syndrome coronavirus 2 nucleic acid diagnosis and animal model study

Ren-Rong Tian Cui-Xian Yang Mi Zhang Xiao-Li Feng Rong-Hua Luo Zi-Lei Duan Jian-Jian Li Jia-Fa Liu Dan-Dan Yu Ling Xu Hong-Yi Zheng Ming-Hua Li Hong-Li Fan Jia-Li Wang Xing-Qi Dong Yong-Tang Zheng

Ren-Rong Tian, Cui-Xian Yang, Mi Zhang, Xiao-Li Feng, Rong-Hua Luo, Zi-Lei Duan, Jian-Jian Li, Jia-Fa Liu, Dan-Dan Yu, Ling Xu, Hong-Yi Zheng, Ming-Hua Li, Hong-Li Fan, Jia-Li Wang, Xing-Qi Dong, Yong-Tang Zheng. Lower respiratory tract samples are reliable for severe acute respiratory syndrome coronavirus 2 nucleic acid diagnosis and animal model study. Zoological Research, 2021, 42(2): 161-169. doi: 10.24272/j.issn.2095-8137.2020.329
Citation: Ren-Rong Tian, Cui-Xian Yang, Mi Zhang, Xiao-Li Feng, Rong-Hua Luo, Zi-Lei Duan, Jian-Jian Li, Jia-Fa Liu, Dan-Dan Yu, Ling Xu, Hong-Yi Zheng, Ming-Hua Li, Hong-Li Fan, Jia-Li Wang, Xing-Qi Dong, Yong-Tang Zheng. Lower respiratory tract samples are reliable for severe acute respiratory syndrome coronavirus 2 nucleic acid diagnosis and animal model study. Zoological Research, 2021, 42(2): 161-169. doi: 10.24272/j.issn.2095-8137.2020.329

下呼吸道标本核酸检测是SARS-CoV-2感染诊断和研究的可靠依据

doi: 10.24272/j.issn.2095-8137.2020.329

Lower respiratory tract samples are reliable for severe acute respiratory syndrome coronavirus 2 nucleic acid diagnosis and animal model study

Funds: This work was supported in part by the National Key R&D Program of China (2020YFC0842000 and 2020YFC0847000 to Y.T.Z.), Yunnan Provincial Major Science Technology Project (202003AC100008 to X.Q.D.), and Key Research Program of the Chinese Academy of Sciences (KJZD-SW-L11 to Y.T.Z.)
More Information
  • 摘要: 新型冠状病毒(SARS-CoV-2)及其造成的肺炎(COVID-19)持续严重影响世界各国。稳定可靠的诊断方法和评价系统的欠缺严重阻碍了有效预防和治疗策略的实施和发展。该研究通过横向和纵向研究,比较分析来源于COVID-19患者和SARS-CoV-2感染猴的不同类型样本中SARS-CoV-2的核酸检出率,分析COVID-19患者和SARS-CoV-2感染猴血清中抗SARS-CoV-2抗体的阳性率,以评估SARS-CoV-2感染诊断方法的可靠性。结果显示无论感染者的临床症状如何,痰液和气管刷样品中病毒核酸检出率较高,感染确诊率高,诊断结果稳定。而6.90% COVID-19患者血清中未检测到抗SARS-CoV-2免疫球蛋白M和G。此外,同时采集不同类型样本并结合其核酸检测的结果并不能提高诊断率。另外,与鼻拭子和咽拭子相比,痰和气管刷中SARS-CoV-2病毒载量持续时间较长,动态变化较明显。因此,痰和气管刷中SARS-CoV-2核酸检测受感染途径、疾病进展和个体差异的影响较小,用下呼吸道标本进行SARS-CoV-2核酸检测是SARS-CoV-2感染诊断和研究的可靠依据。
    #Authors contributed equally to this work
  • Figure  1.  Sample distribution, distribution, and frequency of SARS-CoV-2 nucleic acid-positive samples

    In total, 394 samples from COVID-19 patients (A) and 420 samples from SARS-CoV-2-infected monkeys (B) were included in this study. Nucleic acid was purified from COVID-19 patient samples (C, E) and SARS-CoV-2-infected monkey samples (D, F). SARS-CoV-2 was detected by real-time RT-PCR with a TaqMan probe. Distributions of SARS-CoV-2 nucleic acid-positive samples (C, D) and frequency of positive samples (E, F) are shown.

    Figure  2.  Diagnosis rates in individuals based on sample type and anti-SARS-CoV-2 antibody assays

    Nucleic acid was purified from COVID-19 patient samples (A) and SARS-CoV-2-infected monkey samples (B). SARS-CoV-2 was detected by real-time RT-PCR with a TaqMan probe. Diagnosis rate in individuals based on sample type is shown. Each dot represents an individual. Serum from clinical patients was used for anti-SARS-CoV-2 IgM and IgG antibody (Ab) assays with magnetic particle chemiluminescence. Dynamic changes in IgM (up) and IgG (low) against SARS-CoV-2 in serum of asymptomatic, mild, moderate, and severe/critical COVID-19 patients are shown (C). Positive rates at 1, 3, 7, 12, and 18 days after hospitalization are shown (D).

    Figure  3.  Diagnosis rates based on integration of nucleic acid detection results from different sample types

    Nucleic acid was purified from COVID-19 patient samples (A) and SARS-CoV-2-infected monkey samples (B). SARS-CoV-2 was detected by real-time RT-PCR with a TaqMan probe. Diagnosis rate in individuals based on detection rate of multiple sample types is shown. “/” means or.

    Figure  4.  Dynamic changes in SARS-CoV-2 load

    Nucleic acid was purified from nasopharyngeal swabs (A), pharyngeal swabs (B), and sputum samples (C) obtained from COVID-19 patients or nasal swabs (D), pharyngeal swabs (E), and tracheal brushes (F) obtained from SARS-CoV-2-infected monkeys. SARS-CoV-2 was detected by real-time RT-PCR with a TaqMan probe. SARS-CoV-2 load is shown using cycle threshold (Ct). Each different colored dot and shape represent an individual.

  • [1] Ai T, Yang ZL, Hou HY, Zhan CA, Chen C, Lv WZ, et al. 2020. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 296(2): E32−E40. doi: 10.1148/radiol.2020200642
    [2] Al-Tawfiq JA, Memish ZA. 2020. Diagnosis of SARS-CoV-2 infection based on CT scan vs RT-PCR: reflecting on experience from MERS-CoV. Journal of Hospital Infection, 105(2): 154−155. doi: 10.1016/j.jhin.2020.03.001
    [3] Chakraborty C, Sharma AR, Sharma G, Bhattacharya M, Lee SS. 2020. SARS-CoV-2 causing pneumonia-associated respiratory disorder (COVID-19): diagnostic and proposed therapeutic options. European Review for Medical and Pharmacological Sciences, 24(7): 4016−4026.
    [4] Feng H, Liu YJ, Lv ML, Zhong JQ. 2020. A case report of COVID-19 with false negative RT-PCR test: necessity of chest CT. Japanese Journal of Radiology, 38(5): 409−410. doi: 10.1007/s11604-020-00967-9
    [5] Huang JT, Ran RX, Lv ZH, Feng LN, Ran CY, Tong YQ, et al. 2020. Chronological changes of viral shedding in adult inpatients with COVID-19 in Wuhan, China. Clinical Infectious Diseases, 71(16): 2158−2166. doi: 10.1093/cid/ciaa631
    [6] Jiang SB, Xia S, Ying TL, Lu L. 2020. A novel coronavirus (2019-nCoV) causing pneumonia-associated respiratory syndrome. Cellular & Molecular Immunology, 17(5): 554.
    [7] Kipkorir V, Cheruiyot I, Ngure B, Misiani M, Munguti J. 2020. Prolonged SARS-Cov-2 RNA detection in anal/rectal swabs and stool specimens in COVID-19 patients after negative conversion in nasopharyngeal RT-PCR test. Journal of Medical Virology, 92(11): 2328−2331. doi: 10.1002/jmv.26007
    [8] Lan J, Ge JW, Yu JF, Shan SS, Zhou H, Fan SL, et al. 2020. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807): 215−220. doi: 10.1038/s41586-020-2180-5
    [9] Li TS. 2020. Diagnosis and clinical management of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection: an operational recommendation of Peking Union Medical College Hospital (V2.0). Emerging Microbes & Infections, 9(1): 582−585.
    [10] Li HO, Zhou YJ, Zhang M, Wang HZ, Zhao Q, Liu J. 2020a. Updated approaches against SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 64(6): e00483−20.
    [11] Li KN, Huang B, Wu M, Zhong AF, Li L, Cai Y, et al. 2020b. Dynamic changes in anti-SARS-CoV-2 antibodies during SARS-CoV-2 infection and recovery from COVID-19. Nature Communications, 11(1): 6044. doi: 10.1038/s41467-020-19943-y
    [12] McKechnie JL, Blish CA. 2020. The innate immune system: fighting on the front lines or fanning the flames of COVID-19?. Cell Host & Microbe, 27(6): 863−869.
    [13] Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L, Schulz J, et al. 2020. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature, 585(7824): 268−272. doi: 10.1038/s41586-020-2324-7
    [14] Pan Y, Zhang DT, Yang P, Poon LLM, Wang QY. 2020. Viral load of SARS-CoV-2 in clinical samples. The Lancet Infectious Diseases, 20(4): 411−412. doi: 10.1016/S1473-3099(20)30113-4
    [15] Shang J, Ye G, Shi K, Wan YS, Luo CM, Aihara H, et al. 2020. Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807): 221−224. doi: 10.1038/s41586-020-2179-y
    [16] Song TZ, Han JB, Yang X, Li MH, Zheng YT. 2021. Tissue distribution of SARS-CoV-2 in non-human primates after combined intratracheal and intranasal inoculation. Science China Life Sciences. doi: 10.1007/S11427-020-1877-4.
    [17] Song TZ, Zheng HY, Han JB, Jin L, Yang X, Liu FL, et al. 2020. Delayed severe cytokine storm and immune cell infiltration in SARS-CoV-2-infected aged Chinese rhesus macaques. Zoological Research, 41(5): 503−516. doi: 10.24272/j.issn.2095-8137.2020.202
    [18] Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, et al. 2020. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, 26(5): 681−687. doi: 10.1038/s41591-020-0868-6
    [19] Tahamtan A, Ardebili A. 2020. Real-time RT-PCR in COVID-19 detection: issues affecting the results. Expert Review of Molecular Diagnostics, 20(5): 453−454. doi: 10.1080/14737159.2020.1757437
    [20] Wang C, Horby PW, Hayden FG, Gao GF. 2020. A novel coronavirus outbreak of global health concern. The Lancet, 395(10223): 470−473. doi: 10.1016/S0140-6736(20)30185-9
    [21] Wu XD, Fu B, Chen L, Feng Y. 2020. Serological tests facilitate identification of asymptomatic SARS-CoV-2 infection in Wuhan, China. Journal of Medical Virology, 92(10): 1795−1796. doi: 10.1002/jmv.25904
    [22] Xiao F, Tang MW, Zheng XB, Liu Y, Li XF, Shan H. 2020. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology, 158(6): 1831−1833. doi: 10.1053/j.gastro.2020.02.055
    [23] Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. 2020. Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: relationship to negative RT-PCR testing. Radiology, 296(2): E41−E45. doi: 10.1148/radiol.2020200343
    [24] Xu L, Yu DD, Ma YH, Yao YL, Luo RH, Feng XL, et al. 2020. COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2. Zoological Research, 41(5): 517−526. doi: 10.24272/j.issn.2095-8137.2020.053
    [25] Yao XH, Li TY, He ZC, Ping YF, Liu HW, Yu SC, et al. 2020. A pathological report of three COVID-19 cases by minimal invasive autopsies. Chinese Journal of Pathology, 49(5): 411−417.
    [26] Yu FT, Yan LT, Wang N, Yang SY, Wang LH, Tang YX, et al. 2020. Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clinical Infectious Diseases, 71(15): 793−798. doi: 10.1093/cid/ciaa345
    [27] Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, et al. 2020. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerging Microbes & Infections, 9(1): 386−389.
    [28] Zhu N, Zhang DY, Wang WL, Li XW, Yang B, Song JD, et al. 2020. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8): 727−733. doi: 10.1056/NEJMoa2001017
    [29] Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al. 2020. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 181(5): 1016−1035. doi: 10.1016/j.cell.2020.04.035
    [30] Zou LR, Ruan F, Huang MX, Liang LJ, Huang HT, Hong ZS, et al. 2020. SARS-CoV-2 Viral load in upper respiratory specimens of infected patients. New England Journal of Medicine, 382(12): 1177−1179. doi: 10.1056/NEJMc2001737
  • ZR-2020-329 Supplementary Tables and Figures.pdf
  • 加载中
图(4)
计量
  • 文章访问数:  1245
  • HTML全文浏览量:  601
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-10
  • 录用日期:  2021-02-07
  • 网络出版日期:  2021-02-07
  • 刊出日期:  2021-03-18

目录

    /

    返回文章
    返回