留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparative transcriptomics highlights convergent evolution of energy metabolic pathways in group-living spiders

Han Yang Bin Lyu Hai-Qiang Yin Shu-Qiang Li

Han Yang, Bin Lyu, Hai-Qiang Yin, Shu-Qiang Li. Comparative transcriptomics highlights convergent evolution of energy metabolic pathways in group-living spiders. Zoological Research, 2021, 42(2): 195-206. doi: 10.24272/j.issn.2095-8137.2020.281
Citation: Han Yang, Bin Lyu, Hai-Qiang Yin, Shu-Qiang Li. Comparative transcriptomics highlights convergent evolution of energy metabolic pathways in group-living spiders. Zoological Research, 2021, 42(2): 195-206. doi: 10.24272/j.issn.2095-8137.2020.281

比较转录组学揭示群居蜘蛛中能量代谢通路的趋同进化

doi: 10.24272/j.issn.2095-8137.2020.281

Comparative transcriptomics highlights convergent evolution of energy metabolic pathways in group-living spiders

Funds: This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000) to S.Q.L
More Information
  • 摘要: 大部分蜘蛛有攻击性,捕食同类和其他生物,营独居生活。少数营群居生活的蜘蛛,是解析生物从独居到社会性群居的重要材料。该研究基于比较转录组学,分析了2种群居蜘蛛和12种独居蜘蛛的进化模式,发现群居蜘蛛营养代谢和自噬通路基因受到正选择,与营养相关基因发生氨基酸替换和进化速率升高;发现群居蜘蛛自噬基因进化速率降低,与能量稳态的约束力增加吻合。研究结果揭示了能量代谢通路在蜘蛛从独居到社会性群居转变中的作用。
  • Figure  1.  Topology of samples from the group-living dataset

    Lineages are colored by social categories: red, group-living; grey, solitary. Traits of the social categories are listed.

    Figure  2.  Network of enriched biological processes of twenty positively selected genes in group-living spiders

    Nodes represent significantly enriched biological processes, and the node diameter reflects the degree of enrichment (ranging from a 3.92 to a 36.97 fold change). Edge width between nodes reflects the proportion of shared positively selected genes (ranging from 20% to 100%). The enriched results are clearly related to nutrient metabolism (orange) and autophagy (blue). Grey nodes represent other biological processes.

    Figure  3.  Enriched biological processes or KEGG Pathways of accelerated and decelerated genes in group-living spiders

    The upper three categories show the enriched result of accelerated genes in group-living lineages, while the lower three categories represent decelerated terms/pathways. To differentiate them, bars of these two parts are in opposite directions. The X-axis reflects the negative of the log base 10 of the P-value calculated based on significantly enriched terms/pathways. Orange, nutrient metabolism pathways; blue, autophagy pathways; grey, other biological processes.

    Figure  4.  Overrepresentation test of four modules in deceleration/acceleration datasets when compared with the background

    Red, accelerated/decelerated terms (according to the test dataset); grey, other terms in the module. *: P<0.05, **: P<0.01, ***: P<0.001.

    Figure  5.  Topology of the route dataset

    Red, group-living; grey, solitary or subsocial. Node 1, cooperative (sub-social route); node 2, colonial (para-social route).

    Figure  6.  Hypothesis of the group-living route in spiders

    Table  1.   Adaptively convergent genes in group-living spiders

    Biological ProcessGene symbolDescriptionQ-value
    AutophagyCtsFPeptidase activity3.44E–17
    CtsB1Peptidase activity1.96E–15
    Eip63F-1Autophagic cell death0.0002
    Nutrient metabolismCyt-b5Lipid metabolism7.64E–05
    Had1Fatty acid metabolic process0.0005
    Ald1Glycolytic process0.0441
    Nervous systemgalectinSynaptic target recognition4.35E–14
    OthersCatCatalase activity1.77E–15
    ERp60Protein disulfide-isomerase1.08E–09
    AchlGene regulation3.47E–09
    ypsRegulation of transcription3.12E–05
    eIF5Translation initiation factor activity0.0016
    RpL27Translation0.0027
    下载: 导出CSV

    Table  2.   Accelerated and decelerated terms that are related to nutrient metabolism and autophagy pathways in the "route dataset"

    TermCountP-valueQ-value
    Accelerated in
     four group-living branches
      dme04146:Peroxisome20.01070.0214
     sub-social route
      dme04146:Peroxisome20.02430.1945
      dme01212:Fatty acid metabolism20.04320.1729
      dme00071:Fatty acid degradation20.04320.1729
     para-social route
      GO:0010906~regulation of glucose metabolic process40.00800.0962
    Decelerated in
     four group-living branches
      GO:0034198~cellular response to amino acid starvation20.00650.0518
     sub-social route
      GO:0034198~cellular response to amino acid starvation20.00210.0148
     para-social route
      GO:0043162~ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway20.01010.1637
      GO:0042787~protein ubiquitination involved in ubiquitin-dependent protein catabolic process30.02770.2040
    下载: 导出CSV
  • [1] Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
    [2] Avilés L, Guevara J. 2017. Sociality in spiders. In: Rubenstein DR and Abbot P. Comparative Social Evolution. Cambridge: Cambridge University Press, 188–223.
    [3] Bazazi S, Arganda S, Moreau M, Jeanson R, Dussutour A. 2016. Responses to nutritional challenges in ant colonies. Animal Behaviour, 111: 235−249. doi: 10.1016/j.anbehav.2015.10.021
    [4] Bechsgaard J, Schou MF, Vanthournout B, Hendrickx F, Knudsen B, Settepani V, et al. 2019. Evidence for faster X chromosome evolution in spiders. Molecular Biology and Evolution, 36(6): 1281−1293. doi: 10.1093/molbev/msz074
    [5] Bilde T, Lubin Y. 2001. Kin recognition and cannibalism in a subsocial spider. Journal of Evolutionary Biology, 14(6): 959−966. doi: 10.1046/j.1420-9101.2001.00346.x
    [6] Brodschneider R, Crailsheim K. 2010. Nutrition and health in honey bees. Apidologie, 41(3): 278−294. doi: 10.1051/apido/2010012
    [7] Buskirk RE. 1981. Sociality in the arachnida. In: Hermann HR. Social Insects. New York: Academic Press, 281–367.
    [8] Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15): 1972−1973. doi: 10.1093/bioinformatics/btp348
    [9] Chen SF, Zhou YQ, Chen YR, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17): i884−i890. doi: 10.1093/bioinformatics/bty560
    [10] Cheng DQ, Piel WH. 2018. The origins of the psechridae: web-building lycosoid spiders. Molecular Phylogenetics and Evolution, 125: 213−219. doi: 10.1016/j.ympev.2018.03.035
    [11] Chiara V, Ramon Portugal F, Jeanson R. 2019. Social intolerance is a consequence, not a cause, of dispersal in spiders. PLoS Biology, 17(7): e3000319. doi: 10.1371/journal.pbio.3000319
    [12] Cremer S, Pull CD, Fürst MA. 2018. Social immunity: emergence and evolution of colony-level disease protection. Annual Review of Entomology, 63: 105−123. doi: 10.1146/annurev-ento-020117-043110
    [13] Elbroch LM, Levy M, Lubell M, Quigley H, Caragiulo A. 2017. Adaptive social strategies in a solitary carnivore. Science Advances, 3(10): e1701218. doi: 10.1126/sciadv.1701218
    [14] Evans TA. 1998. Factors influencing the evolution of social behaviour in Australian crab spiders (Araneae: Thomisidae). Biological Journal of the Linnean Society, 63(2): 205−219. doi: 10.1111/j.1095-8312.1998.tb01514.x
    [15] Fernández R, Kallal RJ, Dimitrov D, Ballesteros JA, Arnedo MA, Giribet G, et al. 2018. Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Current Biology, 28(9): 1489−1497. doi: 10.1016/j.cub.2018.03.064
    [16] Fischman BJ, Woodard SH, Robinson GE. 2011. Molecular evolutionary analyses of insect societies. Proceedings of the National Academy of Sciences of the United States of America, 108(S2): 10847−10854.
    [17] Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23): 3150−3152. doi: 10.1093/bioinformatics/bts565
    [18] Gilbert C, McCafferty D, Le Maho Y, Martrette JM, Giroud S, Blanc S, et al. 2010. One for all and all for one: the energetic benefits of huddling in endotherms. Biological Reviews, 85(3): 545−569.
    [19] Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7): 644−652. doi: 10.1038/nbt.1883
    [20] Guevara J, Avilés L. 2015. Ecological predictors of spider sociality in the Americas. Global Ecology and Biogeography, 24(10): 1181−1191. doi: 10.1111/geb.12342
    [21] Hamilton WD. 1971. Geometry for the selfish herd. Journal of Theoretical Biology, 31(2): 295−311. doi: 10.1016/0022-5193(71)90189-5
    [22] Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics resources. Nature Protocols, 4(1): 44−57. doi: 10.1038/nprot.2008.211
    [23] Kapheim KM, Pan HL, Li C, Salzberg SL, Puiu D, Magoc T, et al. 2015. Genomic signatures of evolutionary transitions from solitary to group living. Science, 348(6239): 1139−1143. doi: 10.1126/science.aaa4788
    [24] Kim KW. 2000. Dispersal behaviour in a subsocial spider: group conflict and the effect of food availability. Behavioral Ecology and Sociobiology, 48(3): 182−187. doi: 10.1007/s002650000216
    [25] Korb J, Heinze J. 2016. Major hurdles for the evolution of sociality. Annual Review of Entomology, 61: 297−316. doi: 10.1146/annurev-ento-010715-023711
    [26] Kowalczyk A, Meyer WK, Partha R, Mao WG, Clark NL, Chikina M. 2019. RERconverge: an R package for associating evolutionary rates with convergent traits. Bioinformatics, 35(22): 4815−4817. doi: 10.1093/bioinformatics/btz468
    [27] Krafft B, Horel A, Julita JM. 1986. Influence of food supply on the duration of the gregarious phase of a maternal-social spider, Coelotes terrestris (Araneae, Agelenidae). Journal of Arachnology, 14(2): 219−226.
    [28] Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. 2004. The role of autophagy during the early neonatal starvation period. Nature, 432(7020): 1032−1036. doi: 10.1038/nature03029
    [29] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25(16): 2078−2079. doi: 10.1093/bioinformatics/btp352
    [30] Libbrecht R, Oxley PR, Kronauer DJC. 2018. Clonal raider ant brain transcriptomics identifies candidate molecular mechanisms for reproductive division of labor. BMC Biology, 16(1): 89. doi: 10.1186/s12915-018-0558-8
    [31] Lin YC, Li SQ. 2008. Description on a new Philoponella species (Araneae, Uloboridae), the first record of social spiders from China. Acta Zootaxonomica Sinica, 33(2): 260−263.
    [32] Liu SL, Aagaard A, Bechsgaard J, Bilde T. 2019. DNA methylation patterns in the social spider, Stegodyphus dumicola. Genes, 10(2): 137. doi: 10.3390/genes10020137
    [33] Löytynoja A, Goldman N. 2005. An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Academy of Sciences of the United States of America, 102(30): 10557−10562. doi: 10.1073/pnas.0409137102
    [34] Lubin YD. 1974. Adaptive advantages and the evolution of colony formation in Cyrtophora (Araneae: Araneidae). Zoological Journal of the Linnean Society, 54(4): 321−339. doi: 10.1111/j.1096-3642.1974.tb00806.x
    [35] Macdonald DW. 1983. The ecology of carnivore social behaviour. Nature, 301(5899): 379−384. doi: 10.1038/301379a0
    [36] Majer M, Svenning JC, Bilde T. 2013. Habitat productivity constrains the distribution of social spiders across continents - case study of the genus Stegodyphus. Frontiers in Zoology, 10(1): 9. doi: 10.1186/1742-9994-10-9
    [37] Maynard Smith J, Szathmáry E. 1995. The Major Transitions in Evolution. Oxford: Oxford University Press.
    [38] Michener CD. 1958. The evolution of social behavior in bees. Proceedings of the Tenth International Congress of Entomology.
    [39] Michener CD. 1969. Comparative social behavior of bees. Annual Review of Entomology, 14: 299−342. doi: 10.1146/annurev.en.14.010169.001503
    [40] Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T. 2014. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics, 30(17): i541−i548. doi: 10.1093/bioinformatics/btu462
    [41] Mizushima N. 2007. Autophagy: process and function. Genes & Development, 21(22): 2861−2873.
    [42] Moreno-Hagelsieb G, Latimer K. 2008. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics, 24(3): 319−324. doi: 10.1093/bioinformatics/btm585
    [43] Nentwig W. 1985. Social spiders catch larger prey: a study of Anelosimus eximius (Araneae: Theridiidae). Behavioral Ecology and Sociobiology, 17(1): 79−85. doi: 10.1007/BF00299433
    [44] Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T. 2010. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Research, 38(S2): W23−W28.
    [45] Powers KS, Avilés L. 2007. The role of prey size and abundance in the geographical distribution of spider sociality. Journal of Animal Ecology, 76(5): 995−1003. doi: 10.1111/j.1365-2656.2007.01267.x
    [46] Rehan SM, Toth AL. 2015. Climbing the social ladder: the molecular evolution of sociality. Trends in Ecology & Evolution, 30(7): 426−433.
    [47] Riechert SE, Roeloffs R, Echternacht AC. 1986. The ecology of the cooperative spider Agelena consociata in equatorial Africa (Araneae, Agelenidae). The Journal of Arachnology, 14(2): 175−191.
    [48] Riechert SE. 1985. Why do some spiders cooperate? Agelena consociata, a case study. The Florida Entomologist, 68(1): 105−116. doi: 10.2307/3494333
    [49] Rubenstein DR, Lovette IJ. 2007. Temporal environmental variability drives the evolution of cooperative breeding in birds. Current Biology, 17(16): 1414−1419. doi: 10.1016/j.cub.2007.07.032
    [50] Rypstra AL. 1983. The importance of food and space in limiting web-spider densities; a test using field enclosures. Oecologia, 59(2-3): 312−316. doi: 10.1007/BF00378855
    [51] Rypstra AL. 1986. High prey abundance and a reduction in cannibalism: the first step to sociality in spiders (Arachnida). The Journal of Arachnology, 14(2): 193−200.
    [52] Rypstra AL. 1989. Foraging success of solitary and aggregated spiders: insights into flock formation. Animal Behaviour, 37: 274−281. doi: 10.1016/0003-3472(89)90116-4
    [53] Rypstra AL. 1990. Prey capture and feeding efficiency of social and solitary spiders: a comparison. Acta Zoologica Fennica, 190: 339−343.
    [54] Sandidge JS. 2003. Scavenging by brown recluse spiders. Nature, 426(6962): 30.
    [55] Sanggaard KW, Bechsgaard JS, Fang XD, Duan JJ, Dyrlund TF, Gupta V, et al. 2014. Spider genomes provide insight into composition and evolution of venom and silk. Nature Communications, 5: 3765. doi: 10.1038/ncomms4765
    [56] Sato T, Yamanishi Y, Kanehisa M, Toh H. 2005. The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics, 21(17): 3482−3489. doi: 10.1093/bioinformatics/bti564
    [57] Schneider JM. 2002. Reproductive state and care giving in Stegodyphus (Araneae: Eresidae) and the implications for the evolution of sociality. Animal Behaviour, 63(4): 649−658. doi: 10.1006/anbe.2001.1961
    [58] Settepani V, Bechsgaard J, Bilde T. 2016. Phylogenetic analysis suggests that sociality is associated with reduced effectiveness of selection. Ecology and Evolution, 6(2): 469−477. doi: 10.1002/ece3.1886
    [59] Settepani V, Schou MF, Greve M, Grinsted L, Bechsgaard J, Bilde T. 2017. Evolution of sociality in spiders leads to depleted genomic diversity at both population and species levels. Molecular Ecology, 26(16): 4197−4210. doi: 10.1111/mec.14196
    [60] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11): 2498−2504. doi: 10.1101/gr.1239303
    [61] Shear WA. 1970. The evolution of social phenomena in spiders. Bulletin of the British Arachnological Society, 1(5): 65−76.
    [62] Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL. 2015. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Molecular Biology and Evolution, 32(5): 1342−1353. doi: 10.1093/molbev/msv022
    [63] Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312−1313. doi: 10.1093/bioinformatics/btu033
    [64] Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100(16): 9440−9445. doi: 10.1073/pnas.1530509100
    [65] Tong C, Najm GM, Pinter-Wollman N, Pruitt JN, Linksvayer TA. 2020. Comparative genomics identifies putative signatures of sociality in spiders. Genome Biology and Evolution, 12(3): 122−133. doi: 10.1093/gbe/evaa007
    [66] Toyama M. 1999. Adaptive advantages of maternal care and matriphagy in a foliage spider, Chiracanthium japonicum (Araneae: Coubionidae). Journal of Ethology, 17(1): 33−39. doi: 10.1007/BF02769295
    [67] Uetz GW. 1988. Group forating in colonial web-building spiders: evidence for risk-sensitivity. Behavioral Ecology and Sociobiology, 22(4): 265−270. doi: 10.1007/BF00299841
    [68] Uetz GW. 1989. The "ricochet effect" and prey capture in colonial spiders. Oecologia, 81(2): 154−159. doi: 10.1007/BF00379799
    [69] Vanthournout B, Greve M, Bruun A, Bechsgaard J, Overgaard J, Bilde T. 2016. Benefits of group living include increased feeding efficiency and lower mass loss during desiccation in the social and inbreeding spider Stegodyphus dumicola. Frontiers in Physiology, 7: 18.
    [70] Ward P, Zahavi A. 1973. The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis, 115(4): 517−534.
    [71] Ward PI. 1986. Prey availability increases less quickly than nest size in the social spider Stegodyphus mimosarum. Behaviour, 97(3-4): 213−225. doi: 10.1163/156853986X00603
    [72] Whitehouse MEA, Lubin Y. 2005. The functions of societies and the evolution of group living: spider societies as a test case. Biological Reviews, 80(3): 347−361. doi: 10.1017/S1464793104006694
    [73] Wilson EO. 1971. The Insect Societies. Cambridge: Harvard University Press.
    [74] Wise DH. 2006. Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annual Review of Entomology, 51: 441−465. doi: 10.1146/annurev.ento.51.110104.150947
    [75] Woodard SH, Fischman BJ, Venkat A, Hudson ME, Varala K, Cameron SA, et al. 2011. Genes involved in convergent evolution of eusociality in bees. Proceedings of the National Academy of Sciences of the United States of America, 108(18): 7472−7477. doi: 10.1073/pnas.1103457108
    [76] WSC. [2021-01-30]. World Spider Catalog Version 22.0. Natural History Museum Bern. http://wsc.nmbe.ch.
    [77] Yang ZG. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8): 1586−1591. doi: 10.1093/molbev/msm088
    [78] Yip EC, Rayor LS. 2014. Maternal care and subsocial behaviour in spiders. Biological Reviews, 89(2): 427−449. doi: 10.1111/brv.12060
    [79] Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. 2018. Ensembl 2018. Nucleic Acids Research, 46(D1): D754−D761. doi: 10.1093/nar/gkx1098
    [80] Zhang J, Kumar S. 1997. Detection of convergent and parallel evolution at the amino acid sequence level. Molecular Biology and Evolution, 14(5): 527−536. doi: 10.1093/oxfordjournals.molbev.a025789
    [81] Zhang JZ, Nielsen R, Yang ZH. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution, 22(12): 2472−2479. doi: 10.1093/molbev/msi237
    [82] Zou ZT, Zhang JZ. 2015. Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations?. Molecular Biology and Evolution, 32(8): 2085−2096. doi: 10.1093/molbev/msv091
  • ZR-2020-281Supplementary.zip
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  910
  • HTML全文浏览量:  520
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 录用日期:  2021-03-09
  • 网络出版日期:  2021-03-09
  • 刊出日期:  2021-03-18

目录

    /

    返回文章
    返回