留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Chromosomal assembly of the Antarctic toothfish (Dissostichus mawsoni) genome using third-generation DNA sequencing and Hi-C technology

Seung Jae Lee Jeong-Hoon Kim Euna Jo Eunkyung Choi Jinmu Kim Seok-Gwan Choi Sangdeok Chung Hyun-Woo Kim Hyun Park

Seung Jae Lee, Jeong-Hoon Kim, Euna Jo, Eunkyung Choi, Jinmu Kim, Seok-Gwan Choi, Sangdeok Chung, Hyun-Woo Kim, Hyun Park. Chromosomal assembly of the Antarctic toothfish (Dissostichus mawsoni) genome using third-generation DNA sequencing and Hi-C technology. Zoological Research, 2021, 42(1): 124-129. doi: 10.24272/j.issn.2095-8137.2020.264
Citation: Seung Jae Lee, Jeong-Hoon Kim, Euna Jo, Eunkyung Choi, Jinmu Kim, Seok-Gwan Choi, Sangdeok Chung, Hyun-Woo Kim, Hyun Park. Chromosomal assembly of the Antarctic toothfish (Dissostichus mawsoni) genome using third-generation DNA sequencing and Hi-C technology. Zoological Research, 2021, 42(1): 124-129. doi: 10.24272/j.issn.2095-8137.2020.264

基于三代测序与Hi-C辅助组装鳞头犬牙南极鱼Dissostichus mawsoni参考基因组

doi: 10.24272/j.issn.2095-8137.2020.264

Chromosomal assembly of the Antarctic toothfish (Dissostichus mawsoni) genome using third-generation DNA sequencing and Hi-C technology

Funds: This study was supported by a grant from the National Institute of Fisheries Science (NIFS) of the Republic of Korea (R2019021) and “Ecosystem Structure and Function of Marine Protected Area (MPA) in Antarctica” project (PM19060) funded by the Ministry of Oceans and Fisheries (20170336), Korea
More Information
  • 摘要: 鳞头犬牙南极鱼(Dissostichus mawsoni)是一类分布于南纬60度以下的南大洋的南极鱼科动物。鳞头犬牙南极鱼在零下温度的环境中生存,因此,它是研究狭温性冷适应机制的理想生物模型。在该研究中,我们测序并组装了鳞头犬牙南极鱼的三代高质量基因组(1062 个scaffolds,scaffolds N50为36.98Mb,最长的scaffold长度为46.82Mb)。基因组分析显示,鳞头犬牙南极鱼基因组中包含40.87%的重复序列。结合生物信息学预测、转录组测序、可变剪接分析(Iso-Seq),我们鉴定了32914个鳞头犬牙南极鱼蛋白编码基因,为进一步研究南极犬牙鱼类的极冷环境适应性研究提供了极宝贵的基因资源。新组装的鳞头犬牙南极鱼的高质量参考基因组为深入研究南极犬牙鱼冷环境适应的基因组机制与生物资源保护都具有极其重要的意义。
    #Authors contributed equally to this work
  • Figure  1.  Genome analysis of D. mawsoni

    A: Hi-C interaction heat map for D. mawsoni genome. Intensity of red dots indicates density of cross-linking information between genome fragments. Higher intensity was generated in the same chromosome. B: Collinear relationship between D. mawsoni and G. aculeatus. Green boxes represent chromosomes of G. aculeatus and multicolored ones represent chromosomes of D. mawsoni. C: Phylogenetic analysis of D. mawsoni within teleost lineage and gene family gain-and-loss analysis including number of gained (+) and lost gene families (-). Black numbers specify divergence times between lineages. D: Orthologous gene families among D. mawsoni and other fish species. E: Venn diagram of orthologous gene families among D. mawsoni and three Antarctic fish species.

  • [1] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215(3): 403−410. doi: 10.1016/S0022-2836(05)80360-2
    [2] Bao ZR, Eddy SR. 2002. Automated de novo identification of repeat sequence families in sequenced genomes. Genome Research, 12(8): 1269−1276. doi: 10.1101/gr.88502
    [3] Belton JM, McCord RP, Gibcus JH, Naumova N, Zhan Y, Dekker J. 2012. Hi–C: a comprehensive technique to capture the conformation of genomes. Methods, 58(3): 268−276. doi: 10.1016/j.ymeth.2012.05.001
    [4] Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BFF, Rapp BA, et al. 1999. GenBank. Nucleic Acids Research, 27(1): 12−17. doi: 10.1093/nar/27.1.12
    [5] Benson GJ. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27(2): 573−580. doi: 10.1093/nar/27.2.573
    [6] Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, et al. 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research, 31(1): 365−370. doi: 10.1093/nar/gkg095
    [7] Chalopin D, Naville M, Plard F, Galiana D, Volff JN. 2015. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biology and Evolution, 7(2): 567−580. doi: 10.1093/gbe/evv005
    [8] Chen LB, Lu Y, Li WH, Ren YD, Yu MC, Jiang SW, et al. 2019. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes. GigaScience, 8(4): giz016.
    [9] Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods, 10(6): 563−569. doi: 10.1038/nmeth.2474
    [10] Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18): 3674−3676. doi: 10.1093/bioinformatics/bti610
    [11] Dimmer EC, Huntley RP, Alam-Faruque Y, Sawford T, O'Donovan C, Martin MJ, et al. 2012. The UniProt-GO annotation database in 2011. Nucleic Acids Research, 40(D1): D565−D570. doi: 10.1093/nar/gkr1048
    [12] Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 356(6333): 92−95. doi: 10.1126/science.aal3327
    [13] Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, et al. 2016. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Systems, 3(1): 95−98. doi: 10.1016/j.cels.2016.07.002
    [14] Eastman JT. 2005. The nature of the diversity of Antarctic fishes. Polar Biology, 28(2): 93−107. doi: 10.1007/s00300-004-0667-4
    [15] Eastman JT, DeVries AL. 1981. Buoyancy adaptations in a swim-bladderless Antarctic fish. Journal of Morphology, 167(1): 91−102. doi: 10.1002/jmor.1051670108
    [16] Eastman JT, DeVries AL. 1982. Buoyancy studies of notothenioid fishes in McMurdo Sound, Antarctica. Copeia, 1982(2): 385−393. doi: 10.2307/1444619
    [17] Ghigliotti L, Mazzei F, Ozouf-Costaz C, Bonillo C, Williams R, Cheng CHC, et al. 2007. The two giant sister species of the Southern Ocean, Dissostichus eleginoides and Dissostichus mawsoni, differ in karyotype and chromosomal pattern of ribosomal RNA genes. Polar Biology, 30(5): 625−634. doi: 10.1007/s00300-006-0222-6
    [18] Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A. 2005. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research, 33(S1): D121−D124.
    [19] Hedges SB, Dudley J, Kumar S. 2006. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics, 22(23): 2971−2972. doi: 10.1093/bioinformatics/btl505
    [20] Holt C, Yandell M. 2011. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics, 12(1): 491. doi: 10.1186/1471-2105-12-491
    [21] Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1): 27−30. doi: 10.1093/nar/28.1.27
    [22] Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2): 111−120. doi: 10.1007/BF01731581
    [23] Korf I. 2004. Gene finding in novel genomes. BMC Bioinformatics, 5(1): 59. doi: 10.1186/1471-2105-5-59
    [24] Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18): 3094−3100. doi: 10.1093/bioinformatics/bty191
    [25] Li L, Stoeckert CJ Jr, Roos DS. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research, 13(9): 2178−2189. doi: 10.1101/gr.1224503
    [26] Livermore R, Nankivell A, Eagles G, Morris P. 2005. Paleogene opening of Drake passage. Earth and Planetary Science Letters, 236(1-2): 459−470. doi: 10.1016/j.jpgl.2005.03.027
    [27] Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25(5): 955−964. doi: 10.1093/nar/25.5.955
    [28] Löytynoja A, Goldman N. 2005. An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Academy of Sciences of the United States of America, 102(30): 10557−10562. doi: 10.1073/pnas.0409137102
    [29] Maschette D, Wotherspoon S, Ziegler P. 2019. Exploration of CPUE Standardisation Variances in the Ross Sea (Subareas 88.1 and 88.2A South of 70°s) Antarctic Toothfish (Dissostichus mawsoni) Exploratory Longline Fishery. Hobart, Tasmania: CCAMLR.
    [30] Nawrocki EP, Eddy SR. 2013. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics, 29(22): 2933−2935. doi: 10.1093/bioinformatics/btt509
    [31] Price AL, Jones NC, Pevzner PA. 2005. De novo identification of repeat families in large genomes. Bioinformatics, 21(S1): i351−i358.
    [32] Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19): 3210−3212. doi: 10.1093/bioinformatics/btv351
    [33] Tardaguila M, De La Fuente L, Marti C, Pereira C, Pardo-Palacios FJ, Del Risco H, et al. 2018. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Research, 28(3): 396−411. doi: 10.1101/gr.222976.117
    [34] Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, et al. 2001. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Research, 29(1): 22−28. doi: 10.1093/nar/29.1.22
    [35] Tseng E. 2017(2020-10-16). Cupcake ToFU: supporting scripts for Iso-Seq after clustering step. https://github.com/Magdoll/cDNA_Cupcake/wiki/Cupcake-ToFU:-supporting-scripts-for-Iso-Seq-after-clustering-step.
  • ZR-2020-264 Supplementary Tables and Figures-proof.pdf
  • 加载中
图(2)
计量
  • 文章访问数:  1374
  • HTML全文浏览量:  650
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 录用日期:  2020-11-30
  • 网络出版日期:  2020-12-01
  • 刊出日期:  2021-01-18

目录

    /

    返回文章
    返回