First record of disk-footed bat Eudiscopus denticulus (Chiroptera, Vespertilionidae) from China and resolution of phylogenetic position of the genus
-
摘要: 盘足蝠Eudiscopus denticulus (
Osgood, 1932 )为东南亚地区分布、较稀少的蝙蝠种类。于1981年和2019年夏季,在云南南部进行翼手目调查时,分别采集到8只和3只后足呈盘状的小型蝙蝠。基于外形、头骨形态和分子系统发育学证据证实,这批标本为盘足蝠,为中国翼手目属和种的分布新纪录。以线粒体基因组为标记的系统发育学结果,显示其为鼠耳蝠亚科Myotinae中的基础支系,其基因组编码模式和特征均与鼠耳蝠线粒体基因组类似。同时,课题组也对新采集的个体进行回声定位声波录制与分析。最大熵生态模型MaxEnt预测的结果显示,该物种潜在的适生区呈碎片化,云南南部边境地区均为其潜在的分布区域。-
关键词:
- 盘足蝠Eudiscopus denticulus /
- 中国分布新纪录 /
- 系统发育学位置 /
- 回声定位声波 /
- 适生区预测
Abstract: The disk-footed bat Eudiscopus denticulus (Osgood, 1932 ) is a rare species in Southeast Asia. During two chiropteran surveys in the summer of 1981 and 2019, eight and three small Myotis-like bats with distinct disk-like hindfeet were collected from Yunnan Province, China, respectively. External, craniodental, and phylogenetic evidence confirmed these specimens as E. denticulus, representing a new genus in China. The complete mitochondrial genome consistently showed robust support for E. denticulus as a basal lineage within Myotinae. The coding patterns and characteristics of its mitochondrial genome were similar to that of other published genomes from Myotis. The echolocation signals of the newly collected individuals were analyzed. The potential distribution range of Eudiscopus in Southeast Asia inferred using the MaxEnt model indicated its potential occurrence along the southern border region of Yunnan, China. -
Figure 1. External (A–C), skull, and dentition (D, E) characteristics of Eudiscopus denticulus from China (GZHU 19159), its potential distribution areas in Southeast Asia predicted by MaxEnt (F), and two maximum-likelihood phylogenetic trees using IQ-tree (G, H)
Live individual (A), ear (B), and hindfoot (C); lateral view of skull and mandible (D); ventral view of skull (E). Scale bar: 5 mm. Photos by Yi Wu (A–C); drawings by Wen-Hua Yu (D, E). F: Black circles mark sampling localities in Xishuangbanna, Yunnan, China; green circles represent historical occurrences from literature and Global Biodiversity Information Facility (GBIF) database (Occurrence dataset https://doi.org/10.15468/igaciv accessed via GBIF.org on 2019-10-14). Red regions are good potential distributions based on localities known so far; orange areas are predictions with inclusion of present records. G: Phylogenetic tree containing 360 presumed vespertilionid species representing large-scale sampling strategy. H: Phylogenetic tree based on 101 complete mitochondrial sequences. Red, green, and blue trapezoids represent Eudiscopus, Submyotodon, and Myotis, respectively.
Table 1. Descriptive statistics of external and craniodental measurements, and echolocation parameters of Eudiscopus denticulus from China and nearby countries
Index Yunnan, China Pu Huong, Vietnam t-value Pegu, Myanmar Laos PC1 PC2 W (g) 5.2±1.14 (11) (4.0-7.0) - - - - - - HB (mm) 40.5±2.28 (11) (36.0-45.3) 38.0±2.19 (5) (35.9-40.5) 2.06 - - - - T (mm) 40.3±2.87 (11) (35.0-45.0) 38.8±2.56 (5) (34.9-41.4) 1.05 - - - - E (mm) 11.2±1.75 (11) (8.0-13.0) 11.6±0.66 (4) (10.9-12.5) -0.51 - - - - HF (mm) 6.0±0.82 (11) (5.4-8.1) 6.7±0.63 (5) (5.8-7.2) -1.56 - - - - FA (mm) 36.7±1.10 (11) (34.8-38.5) 34.5±0.88 (5) (33.5-35.6) 3.98* - - - - Tib (mm) 17.2±0.54 (11) (16.2-17.9) 16.3±0.64 (5) (15.4-16.9) 2.68* - - - - GTL (mm) 14.34±0.34 (8) (13.71-14.79) 14.00±0.22 (10) (13.59-14.32) 2.56* 13.43 14.49 0.81 0.54 CCL (mm) 13.28±0.28 (8) (12.83-13.74) 12.79±0.21 (11) (12.47-13.04) 4.43* 12.15 13.16 0.72 0.62 CBL (mm) 14±0.32 (8) (13.35-14.42) - - - - - - BCW (mm) 6.84±0.14 (8) (6.63-7.01) 6.74±0.1 (11) (6.53-6.87) 1.76 6.36 6.99 0.46 0.56 BCH (mm) 4.53±0.23 (8) (4.16-4.78) 3.76±0.12 (11) (3.54-3.97) 8.86* 3.07 3.54 0.35 0.72 ZYW (mm) 9.48±0.29 (4) (9.16-9.82) 9.21±0.15 (6) (8.97-9.43) - - - - - MAW (mm) 7.72±0.19 (8) (7.41-7.92) 7.51±0.16 (11) (7.34-7.81) 2.64* 7.20 7.75 0.49 0.75 PL (mm) 6.38±0.11 (8) (6.25-6.6) - - - - - - IOW (mm) 3.73±0.11 (8) (3.60-3.89) 3.61±0.16 (11) (3.4-3.94) 1.95 3.47 3.71 -0.14 0.87 UIM3L (mm) 6.42±0.18 (8) (6.12-6.68) - - - - - - UCM3L (mm) 5.44±0.11 (8) (5.31-5.58) 5.36±0.11 (10) (5.21-5.49) 1.61 5.20 5.48 0.88 0.25 UCCW (mm) 3.77±0.06 (8) (3.71-3.91) 3.70±0.09 (9) (3.60-3.91) 1.60NS 3.59 3.80 0.62 0.53 UM3M3W (mm) 5.86±0.12 (8) (5.62-6.01) 5.81±0.09 (10) (5.74-6.05) 1.24 - 5.88 - - LIM3L (mm) 6.80±0.15 (8) (6.56-7.06) - - - - - - LCM3L (mm) 5.74±0.12 (8) (5.54-5.88) 5.70±0.12 (11) (5.52-5.85) 0.77 5.49 5.68 0.89 -0.07 MANL (mm) 10.23±0.18 (8) (9.82-10.42) 10.2±0.15 (11) (9.91-10.46) 0.34 9.74 10.63 0.80 0.30 PCH (mm) 3.29±0.11 (8) (3.13-3.40) 3.16±0.11 (11) (3-3.38) 2.63* 3.00, 3.09 3.25 - - HF (kHz) 98.3±3.25 (24) (92.0-104.0) 108.9 (3) (106.5-112.9)# - - - - - LF (kHz) 49.9±2.02 (24) (45.0-54.4) 52.0 (51.1-53.9)# - - - - - FMAX (kHz) 53.3±1.29 (24) (50.1-55.0) 61.7 (60.9-63.0)# - - - - - DUR (ms) 3.1±0.24 (24) (2.8-3.7) 2.03 (1.87-2.11)# - - - - - Abbreviations can be found in text and Supplementary Materials and Methods. Values are given as means±SD (if n>3) and minimum-maximum (min-max). t-value is from Students t-test between China and Vietnam specimens when measurement distribution fits normality, and * represents P<0.05. Using a Pettersson D500X ultrasound detector (Pettersson Elektronik AB), echolocation calls were recorded from three Chinese-sampled bats (collected in 2019) flying in a room (5 m×4 m×3 m). # indicates secondary means and minimum and maximum values based on mean values of three individuals from Zsebők et al. (2014). Note, scores in first parentheses in echolocation measurements indicate number of calls analyzed in this study; those from Zsebők et al. (2014) represent number of individuals in their study. Indices in bold indicate variables used in principal component analysis, PC1 and PC2 scores in bold indicate variables with greatest loadings in respective component. -: Not available. -
[1] Amador LI, Arévalo RLM, Almeida FC, Catalano SA, Giannini NP. 2018. Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. Journal of Mammalian Evolution, 25(1): 37−70. [2] Barclay RM, Fullard JH, Jacobs DS. 1999. Variation in the echolocation calls of the hoary bat (Lasiurus cinereus): influence of body size, habitat structure, and geographic location. Canadian Journal of Zoology, 77(4): 530−534. [3] Chung CU, Kim SC, Jeon YS, Han SH, Yu JN. 2018. The complete mitochondrial genome of long-tailed whiskered bat, Myotis frater (Myotis, Vespertilionidae). Mitochondrial DNA Part B, 3(2): 570−571. [4] Conisbee LR. 1953. A list of the Names Proposed for Genera and Subgenera of Recent Mammals, from the Publication of T. S. Palmer's Index Generum Mammalium, 1904 to the end of 1951. London: British Museum (Natural History). [5] Görföl T, Furey NM, Bates PJJ, Csorba G. 2019. The identity of ‘Falsistrellus’ affinis from Myanmar and Cambodia and new records of Hypsugo dolichodon from these countries. Acta Chiropterologica, 20(2): 301−309. [6] Hughes AC, Satasook C, Bates PJJ, Soisook P, Sritongchuay T, Jones G, et al. 2011. Using echolocation calls to identify Thai bat species: vespertilionidae, emballonuridae, nycteridae and megadermatidae. Acta Chiropterologica, 13(2): 447−455. [7] Jebb D, Foley NM, Kerth G, Teeling EC. 2017. The complete mitochondrial genome of the Bechstein’s bat, Myotis bechsteinii (Chiroptera, Vespertilionidae). Mitochondrial DNA Part B, 2(1): 92−94. [8] Jiang JJ, Wang SQ, Li YJ, Zhang W, Yin AG, Hu M. 2016. The complete mitochondrial genome of insect-eating brandt's bat, Myotis brandtii (Myotis, Vespertilionidae). Mitochondrial DNA Part A, 27(2): 1403−1404. [9] Kock D, Kovac D. 2000. Eudiscopus denticulus (Osgood 1932) in Thailand with notes on its roost (Chiroptera: Vespertilionidae). Zeitschrift für Säugetierkunde, 65(2): 121−123. [10] Koopman K. 1970. A second locality for Eudiscopus denticulus (Chiroptera, Vespertilionidae). Journal of Mammalogy, 51(1): 191. [11] Kruskop SV. 2010. Preliminary data on the bat fauna of Bu Gia Map National Park (Southern Vietnam). Plecotus, 13: 69−74. [12] Kruskop SV. 2013. Bats of Vietnam: Checklist and an Identification Manual. 2nd ed. Moscow: KMK Scientific Press. [13] Kunz TH, Anthony ELP. 1982. Age estimation and postnatal development in the Mexican free-tailed bat (Tadarida brasiliensis mexicana): birth size, growth rates, and age estimation. Journal of Mammalgy, 76(3): 123−138. [14] Marcy AE, Fruciano C, Phillips MJ, Mardon K, Weisbecker V. 2018. Low resolution scans can provide a sufficiently accurate, cost- and time-effective alternative to high resolution scans for 3D shape analyses. PeerJ, 6(5): e5032. [15] Osgood WH. 1932. Mammals of the kelley-roosevelts and delacour asiatic expeditions. Field Museum of Natural History, Zoology Series, 18(10): 193−339. [16] Phillips SJ, Dudík M. 2008. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31(2): 161−175. [17] Phillips SJ, Dudík M, Schapire RE. 2004. MaxEnt software for species distribution modeling. In: Proceedings of the 21st International Conference on Machine Learning. 655–662. [18] Platt RN, Faircloth BC, Sullivan KAM, Kieran TJ, Glenn TC, Vandewege MW, et al. 2017. Conflicting evolutionary histories of the mitochondrial and nuclear genomes in new world Myotis Bats. Systematic Biology, 67(2): 236−249. [19] Robinson MF. 1996. A relationship betwen echolocation calls and noseleaf widths in bats of the genera Rhinolophus and Hipposideros. Journal of Zoology, 239(2): 389−393. [20] Schnitzler HU, Kalko EKV. 2001. Echolocation by insect-eating bats. Bioscience, 51(7): 557. [21] Schnitzler HU, Moss CF, Denzinger A. 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecolgy & Evolution, 18(8): 386−394. [22] Shi JJ, Rabosky DL. 2015. Speciation dynamics during the global radiation of extant bats. Evolution, 69(6): 1528−1545. [23] Soisook P, Csorba G, Bumrungsri S, Francis CM, Bates P, Kingston T. 2016. Eudiscopus denticulus. The IUCN Red List of Threatened Species, e.T8168A22028419. https://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T8168A22028419.en. [24] Simmons NB. 2005. Order Chiroptera. In: Wilson DE, Reeder DM. Mammal Species of the World: A Taxonomic and Geographic Reference, 3rd edn. Baltimore: The Johns Hopkins University Press, 2142. [25] Tate GHH. 1942. Review of the vespertilionine bats: with special attention to genera and species of the Archbold collections. Bulletin of the American Museum of Natural History, 80(7): 221−297. [26] Tsytsulina K, Kruskop S, Ryuichi M. 2007. Taxonomical position of the genus Eudiscopus among vespertilionid bats. Bat Research News, 44: 309. [27] Wilson DE, Mittermeier RA. 2019. Handbook of the Mammals of the World-Volume 9: Bats. Barcelona: Lynx Edicions. [28] Yoshino H, Matsumura S, Kinjo K, Tamura H, Ota H, Izawa M. 2006. Geographical variation in echolocation call and body size of the Okinawan least horseshoe bat, Rhinolophus pumilus (Mammalia: Rhinolophidae), on Okinawa-jima Island, Ryukyu Archipelago, Japan. Zoological Science, 23(8): 661−667. [29] Yu DN, Qian KN, Storey KB, Hu YZ, Zhan JY. 2016. The complete mitochondrial genome of Myotis lucifugus (Chiroptera: Vespertilionidae). Mitochondrial DNA Part A, 27(4): 2423−2424. [30] Yu W, Wu Y, Yang G. 2014. Early diversification trend and Asian origin for extent bat lineages. Journal of Evolutionary Biology, 27(10): 2204−2218. [31] Zsebők S, Son NT, Csorba G. 2014. Acoustic characteristics of the echolocation call of the disc-footed bat, Eudiscopus denticulus (Osgood, 1932) (Chiroptera, Vespertilionidae). Acta Acustica United with Acustica, 100(4): 767−771. -
ZR-2020-224Supplementary.zip
-