留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular and morphological evidence for a new species of the genus Typhlomys (Rodentia: Platacanthomyidae)

Ting-Li Hu Feng Cheng Zhen Xu Zhong-Zheng Chen Lei Yu Qian Ban Chun-Lin Li Tao Pan Bao-Wei Zhang

Ting-Li Hu, Feng Cheng, Zhen Xu, Zhong-Zheng Chen, Lei Yu, Qian Ban, Chun-Lin Li, Tao Pan, Bao-Wei Zhang. Molecular and morphological evidence for a new species of the genus Typhlomys (Rodentia: Platacanthomyidae). Zoological Research, 2021, 42(1): 100-107. doi: 10.24272/j.issn.2095-8137.2020.132
Citation: Ting-Li Hu, Feng Cheng, Zhen Xu, Zhong-Zheng Chen, Lei Yu, Qian Ban, Chun-Lin Li, Tao Pan, Bao-Wei Zhang. Molecular and morphological evidence for a new species of the genus Typhlomys (Rodentia: Platacanthomyidae). Zoological Research, 2021, 42(1): 100-107. doi: 10.24272/j.issn.2095-8137.2020.132

猪尾鼠属一新种的分子和形态证据(啮齿目:刺山鼠科)

doi: 10.24272/j.issn.2095-8137.2020.132

Molecular and morphological evidence for a new species of the genus Typhlomys (Rodentia: Platacanthomyidae)

Funds: This project was supported by the Global Environment Facility Project "Securing Biodiversity Conservation and Sustainable Use in Huangshan Municipality", Biodiversity Survey, Monitoring and Assessment Project of Ministry of Ecology and Environment, China (2019HB2096001006) and Natural Science Foundation of Universities of Anhui Province (KJ2019A0486)
More Information
  • 摘要: 该研究以系统发育和形态学分析为依据,对中国安徽黄山地区猪尾鼠属(啮齿目:刺山鼠科)物种的分类学地位进行了重新评价。系统发育分析结果表明,我国猪尾鼠属共有6个物种,其中包括4个有效种(Typhlomyscinereus, T. chapensis, T. daloushanensis, T. nanus),1种隐存种和分布在皖南黄山地区的1种新种 (Typhlomyshuangshanensis sp. nov. );形态学分析也进一步支持了在皖南黄山地区(600 m至1 200 m)发现的个体为一新物种。
    #Authors contributed equally to this work
  • Figure  1.  Phylogenetic tree, species delimitation, and principal component and discriminant function analysis of Typhlomys, with skulls and dorsal views of Typhlomys huangshanensis sp. nov. and molar comparisons of five species

    A: Bayesian phylogenetic trees derived from cyt b (a), GHR (b), IRBP (c), and concatenated nuclear and mitochondrial (d) sequences. Letters near branches correspond to different species: A: T. chapensis; B: T. nanus; C: T. daloushanensis; D: T. sp. 2; E: T. cinereus; F: T. sp. 1. B: Species delimitation using PTP (a) and BPP (b), and nuclear gene species trees reconstructed with *BEAST. Node numbers are posterior probabilities (upper) and median ages of divergence times (lower). C: Results of principal component analysis (PCA) (a) and discriminant function analysis (DFA) (b). D: Right upper and lower molars of Typhlomys huangshanensis sp. nov. (holotype, AE1902HS03) (a), T. nanus (KIZ 033585) (b), T. chapensis (KIZ 033593) (c), T. daloushanensis (KIZ 033556) (d), and T. cinereus (USNM 141495) (e). E: Ventral, dorsal, and lateral views of skull and lingual side of mandibles of Typhlomys huangshanensis sp. nov. a: Female (paratype, AE1901HS01); b: male (holotype, AE1902HS03). F: Dorsal views of skin of holotype (upper) and paratype (lower). Except for Typhlomys huangshanensis sp. nov., cheek teeth figures of above species were obtained from Cheng et al. (2017).

    Table  1.   External and cranial morphological measurements (mm) of Typhlomys

    VariableT. cinereus(n=2)T. daloushanensis(n=29)T. chapensis(n=21)T. nanus(n=3)T. sp. 1(n=9)
    TL 99.00±4.24 116.80±5.35 106.00±1.45 102.00±4.58 98.87±5.11
    96.00–102.00 105.00–129.00 80.00–126.00 97.00–106.00 91.00–107.00
    HB 73.50±3.54 86.05±6.55 77.59±10.87 70.00±4.58 77.49±4.69
    71.00–76.00 72.00–105.00 61.00–115.00 65.00–74.00 70.00–86.54
    HL 18.80±1.13 22.93±1.33 21.43±1.21 19.67±0.58 19.08±1.21
    18.00–19.60 21.00–26.00 19.00–24.00 19.00–20.00 17.00–21.00
    EL 16.03±1.41 17.56±1.26 17.00±0 13.17±1.78
    13.50–21.00 14.00–20.00 17.00–17.00 11.00–16.00
    WG 22.98±3.68 16.93±3.58 10.47±2.39 15.33±2.50
    15.40–31.00 7.70–22.60 8.80–13.20 12.03–20.40
    GLS 22.20±1.11 24.90±1.24 23.38±1.17 21.55±1.08 22.10±0.95
    21.40–23.00 23.74–26.33 21.65–24.82 20.93–22.16 20.60–23.43
    CBL 20.15±1.01 22.74±1.14 21.26±1.06 19.83±0.99 20.48±0.88
    19.70–20.60 21.39–24.45 20.05–22.16 19.76–19.89 19.21–21.75
    BL 18.25±0.91 20.81±1.04 19.46±0.97 17.93±0.90 18.71±0.27
    17.70–18.80 19.50–22.51 18.37–20.50 17.54–18.31 18.28–18.99
    IOB 4.80±0.24 4.99±0.25 5.27±0.26 4.79±0.24 4.75±0.06
    4.70–4.90 4.55–5.43 5.00–5.60 4.77–4.81 4.67–4.83
    BCH 7.70±0.39 7.82±0.39 7.94±0.40 7.11±0.36 7.52±0.24
    7.50–7.90 7.23–8.91 7.35–8.46 7.04–7.18 7.11–7.88
    ZMW 11.80±0.59 13.86±0.69 12.64±0.63 11.55±0.58 12.48±0.18
    11.40–12.20 13.08–15.05 12.00–13.39 11.35–11.74 12.18–12.69
    UML 3.30±0.17 3.81±0.19 3.61±0.18 3.31±0.17 3.74±0.16
    3.20–3.40 3.57–4.05 3.46–3.85 3.13–3.49 3.56–4.05
    LUIM 10.70±0.54 12.00±0.60 11.34±0.57 10.13±0.51 10.89±0.24
    10.40–11.00 11.42–12.65 10.69–12.02 10.08–10.17 10.61–11.34
    M1–M1 5.05±0.25 5.57±0.28 5.31±0.27 4.91±0.25 4.90±0.11
    5.00–5.10 5.31–5.83 5.05–5.52 4.80–5.01 4.72–5.03
    HCV 4.05±0.20 4.59±0.23 3.99±0.20 3.96±0.20 4.14±0.25
    3.80–4.30 4.20–5.06 3.60–4.37 3.81–4.11 3.77–4.52
    LNM–FLM 5.95±0.30 6.76±0.34 6.37±0.32 5.83±0.29 6.03±0.18
    5.60–6.30 4.96–7.35 6.05–6.57 5.79–5.86 5.75–6.33
    TL: Tail length; HB: Head and body length; HL: Hind foot length; EL: Ear length; WG: Weight; GLS: Greatest length of skull; CBL: Condylobasal length; BL: Basal length; IOB: Interorbital breadth; BCH: Braincase height; ZMW: Zygomatic width; UML: Upper molar row length; LUIM: Length between upper incisor and molar; M1-M1: Crown breadth of 1st upper molars; HCV: Height of coronoid valley; LNM-FLM: Length between backmost notch point of mandibular and front of lower molars. External and cranial morphological measurements of cheek teeth of above species were obtained from Cheng et al. (2017), except for T. sp. 1.
    下载: 导出CSV
  • [1] Abramov AV, Aniskin VM, Rozhnov VV. 2012. Karyotypes of two rare rodents, Hapalomys delacouri and Typhlomys cinereus (Mammalia, Rodentia), from Vietnam. ZooKeys, 164: 41−49. doi: 10.3897/zookeys.164.1785
    [2] Abramov AV, Balakirev AE, Rozhnov VV. 2014. An enigmatic pygmy dormouse: molecular and morphological evidence for the species taxonomic status of Typhlomys chapensis (Rodentia: Platacanthomyidae). Zoological Studies, 53: 34. doi: 10.1186/s40555-014-0034-2
    [3] Anjum F, Turni H, Mulder PGH, van der Burg J, Brecht M. 2006. Tactile guidance of prey capture in Etruscan shrews. Proceedings of the National Academy of Sciences of the United States of America, 103(44): 16544−16549. doi: 10.1073/pnas.0605573103
    [4] Baker RJ, Bradley RD. 2006. Speciation in mammals and the genetic species concept. Journal of Mammalogy, 87(4): 643−662. doi: 10.1644/06-MAMM-F-038R2.1
    [5] Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, et al. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10(4): e1003537. doi: 10.1371/journal.pcbi.1003537
    [6] Carmona FD, Jiménez R, Collinson JM. 2008. The molecular basis of defective lens development in the Iberian mole. BMC Biology, 6: 44. doi: 10.1186/1741-7007-6-44
    [7] Chen ZZ, He K, Huang C, Wan T, Lin LK, Liu SY, et al. 2017. Integrative systematic analyses of the genus Chodsigoa (Mammalia: Eulipotyphla: Soricidae), with descriptions of new species. Zoological Journal of the Linnean Society, 180(3): 694−713. doi: 10.1093/zoolinnean/zlw017
    [8] Cheng F, He K, Chen ZZ, Zhang B, Wan T, Li JT, et al. 2017. Phylogeny and systematic revision of the genus Typhlomys (Rodentia, Platacanthomyidae), with description of a new species. Journal of Mammalogy, 98(3): 731−743. doi: 10.1093/jmammal/gyx016
    [9] Cheng JL, Lv X, Xia L, Ge DY, Zhang Q, Lu L, et al. 2019. Impact of orogeny and environmental change on genetic divergence and demographic history of Dipus sagitta (Dipodoidea, Dipodinae) since the Pliocene in inland East Asia. Journal of Mammalian Evolution, 26(2): 253−266. doi: 10.1007/s10914-017-9397-6
    [10] Cong HY, Liu ZX, Wang YM, Wang XG, Motokawa M, Harada M, et al. 2013. First record of Typhlomys cinereus in Guangdong province. Acta Theriologica Sinica, 33(4): 389−392. (in Chinese)
    [11] Cui JF, Lei BY, Newman C, Ji SN, Su HW, Buesching CD, et al. 2020. Functional adaptation rather than ecogeographical rules determine body-size metrics along a thermal cline with elevation in the Chinese pygmy dormouse (Typhlomys cinereus). Journal of Thermal Biology, 88: 102510. doi: 10.1016/j.jtherbio.2020.102510
    [12] Fjeldså J, Bowie RCK, Rahbek C. 2012. The role of mountain ranges in the diversification of birds. Annual Review of Ecology, Evolution, and Systematics, 43: 249−265. doi: 10.1146/annurev-ecolsys-102710-145113
    [13] Fu JZ, Zeng XM. 2008. How many species are in the genus batrachuperus? A phylogeographical analysis of the stream salamanders (family hynobiidae) from southwestern China. Molecular Ecology, 17(6): 1469−1488. doi: 10.1111/j.1365-294X.2007.03681.x
    [14] He K, Gutiérrez EE, Heming NM, Koepfli KP, Wan T, He SW, et al. 2019. Cryptic phylogeographic history sheds light on the generation of species diversity in sky-island Mountains. Journal of Biogeography, 46(10): 2232−2247. doi: 10.1111/jbi.13664
    [15] Hinckley A, Hawkins MTR, Achmadi AS, Maldonado JE, Leonard JA. 2020. Ancient divergence driven by geographic isolation and ecological adaptation in forest dependent sundaland tree squirrels. Frontiers in Ecology and Evolution, 8: 208. doi: 10.3389/fevo.2020.00208
    [16] Hong ZF. 1982. Redescription of Typhlomys cinereus Milne-Edward, with a note on its ecology (muscardinidae). Wuyi Science Journal, 2(1): 103−107. (in Chinese)
    [17] Jansa SA, Giarla TC, Lim BK. 2009. The phylogenetic position of the Rodent genus Typhlomys and the geographic origin of Muroidea. Journal of Mammalogy, 90(5): 1083−1094. doi: 10.1644/08-MAMM-A-318.1
    [18] Liu Q, Chen P, He K, Kilpatrick CW, Liu SY, Yu FH, et al. 2012. Phylogeographic Study of Apodemus ilex (Rodentia: Muridae) in Southwest China. PLoS One, 7(2): e31453. doi: 10.1371/journal.pone.0031453
    [19] Liu XY, Zhang Q, Zhang CL, Yuan FL, Jiao ST. 2017. Global major events in Miocene and its significance: revelation from data mining. Chinese Science Bulletin, 62(15): 1645−1654. doi: 10.1360/N972016-00726
    [20] Lv XF, Cong HY, Kong LM, Motokawa M, Harada M, Wu Y, et al. 2016. The nearly complete mitochondrial genome of Chinese pygmy dormouse Typhlomys cinereus (Rodentia: Platacanthomyidae). Mitochondrial DNA Part B, 1(1): 605−606. doi: 10.1080/23802359.2016.1209092
    [21] McCormack JE, Huang H, Knowles LL. 2009. Sky islands. In: Gillespie RG, Clague DA. Encyclopedia of Islands. Berkeley: University of California Press, 841-843.
    [22] Michaux JR, Chevret P, Filippucci MG, Macholán M. 2002. Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA. Molecular Phylogenetics and Evolution, 23(2): 123−136. doi: 10.1016/S1055-7903(02)00007-6
    [23] Musser GG, Carleton MD. 2005. Superfamily muroidea. In: Wilson DE, Reeder DM. Mammal Species of the World: A Taxonomic and Geographic Reference. Baltimore: Johns Hopkins University Press, 894-1531.
    [24] Panyutina AA, Kuznetsov AN, Volodin IA, Abramov AV, Soldatova IB. 2017. A blind climber: the first evidence of ultrasonic echolocation in arboreal mammals. Integrative Zoology, 12(2): 172−184. doi: 10.1111/1749-4877.12249
    [25] Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2): 289−290. doi: 10.1093/bioinformatics/btg412
    [26] Riddle BR, Jezkova T, Eckstut ME, Oláh-Hemmings V, Carraway LN. 2014. Cryptic divergence and revised species taxonomy within the Great Basin pocket mouse, Perognathus parvus (Peale, 1848), species group. Journal of Mammalogy, 95(1): 9−25. doi: 10.1644/12-MAMM-A-252
    [27] Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539−542. doi: 10.1093/sysbio/sys029
    [28] Rubin CT, Lanyon LE. 1984. Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. Journal of Theoretical Biology, 107(2): 321−327. doi: 10.1016/S0022-5193(84)80031-4
    [29] Smith AT. 2008. Family platacanthomyidae. In: Smith AT, Xie Y. A Guide to the Mammals of China. Princeton: Princeton University Press, 208-209.
    [30] Song XJ, Tang WQ, Zhang Y. 2017. Freshwater fish fauna and zoogeographical divisions in the Wuyi-Xianxialing Mountains of eastern China. Biodiversity Science, 25(12): 1331−1338. (in Chinese) doi: 10.17520/biods.2017207
    [31] Wan T, He K, Jiang XL. 2013. Multilocus phylogeny and cryptic diversity in Asian shrew-like moles (Uropsilus, Talpidae): implications for taxonomy and conservation. BMC Evolutionary Biology, 13: 232. doi: 10.1186/1471-2148-13-232
    [32] Wan T, He K, Jin W, Liu SY, Chen ZZ, Zhang B, et al. 2018. Climate niche conservatism and complex topography illuminate the cryptic diversification of Asian shrew-like moles. Journal of Biogeography, 45(10): 2400−2414. doi: 10.1111/jbi.13401
    [33] Wang QS. 1990. The Mammal Fauna of Anhui. Heifei: Anhui Publishing House of Science and Technology, 315. (in Chinese)
    [34] Wang YX, Li CY, Chen ZP. 1996. Taxonomy, distribution and differentiation on Typhlomys cinereus (Platacanthomyidae, Mammalia). Acta Theriologica Sinica, 16(1): 54−66. (in Chinese)
    [35] Wu YK, Wang YZ, Jiang K, Hanken J. 2013. Significance of pre-Quaternary climate change for montane species diversity: insights from Asian salamanders (Salamandridae: Pachytriton). Molecular Phylogenetics and Evolution, 66(1): 380−390. doi: 10.1016/j.ympev.2012.10.011
    [36] Yang ZH, Rannala B. 2010. Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences of the United States of America, 107(20): 9264−9269. doi: 10.1073/pnas.0913022107
    [37] Zhang H, Wu GY, Wu YQ, Yao JF, You S, Wang CC, et al. 2019. A new species of the genus Crocidura from China based on molecular and morphological data (Eulipotyphla: Soricidae). Zoological Systematics, 44(4): 279−293.
    [38] Zhang JJ, Kapli P, Pavlidis P, Stamatakis A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(12): 2869−2876.
    [39] Zhou WW, Wen Y, Fu JZ, Xu YB, Jin JQ, Ding L, et al. 2012. Speciation in the Rana chensinensis species complex and its relationship to the uplift of the Qinghai-Tibetan Plateau. Molecular Ecology, 21(4): 960−973. doi: 10.1111/j.1365-294X.2011.05411.x
  • ZR-2020-132Supplementary.zip
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  1344
  • HTML全文浏览量:  672
  • PDF下载量:  224
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-31
  • 录用日期:  2020-11-20
  • 网络出版日期:  2020-11-24
  • 刊出日期:  2021-01-18

目录

    /

    返回文章
    返回