留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Determining the level of extra-pair paternity in yellow-bellied prinias, a socially monogamous passerine

Zhi-Feng Ding Chun-Lan Zhang Wen-Sui Zhang Qian-Min Yuan Long-Wu Wang Gang Ren En Li Hui-Jian Hu Wei Liang

Zhi-Feng Ding, Chun-Lan Zhang, Wen-Sui Zhang, Qian-Min Yuan, Long-Wu Wang, Gang Ren, En Li, Hui-Jian Hu, Wei Liang. Determining the level of extra-pair paternity in yellow-bellied prinias, a socially monogamous passerine. Zoological Research, 2021, 42(1): 108-115. doi: 10.24272/j.issn.2095-8137.2020.079
Citation: Zhi-Feng Ding, Chun-Lan Zhang, Wen-Sui Zhang, Qian-Min Yuan, Long-Wu Wang, Gang Ren, En Li, Hui-Jian Hu, Wei Liang. Determining the level of extra-pair paternity in yellow-bellied prinias, a socially monogamous passerine. Zoological Research, 2021, 42(1): 108-115. doi: 10.24272/j.issn.2095-8137.2020.079

一种社会单配制鸟类黄腹山鹪莺的婚外父权水平的确定

doi: 10.24272/j.issn.2095-8137.2020.079

Determining the level of extra-pair paternity in yellow-bellied prinias, a socially monogamous passerine

Funds: This work was supported by the National Natural Science Foundation of China (31572257 to H.J.H., 31660617 to L.W.W., 31472013 and 31970427 to W.L.) and Guangdong Academy of Sciences (GDAS) Special Project of Science and Technology Development (2018GDASCX-0107)
More Information
  • 摘要: 先前基于分子生物学证据的研究表明,大多数社会性单配制的鸟类在遗传上呈现出一妻多夫的婚配制度。然而,我们对鸟类婚配制度的了解很大程度上来自于北半球的研究案例,而有关热带鸟类的研究资料则相对匮乏。这种在系统发育和空间采样上的不均匀性妨碍了我们对鸟类婚配制度的理解和解释。该研究探讨了华南地区黄腹山鹪莺(Prinia flaviventris)的广西热带种群的婚外父权的比率。对24巢129个个体(83只雏鸟和46只亲鸟)进行取样,83只雏鸟中有12只为婚外子代(占比14.46%),隶属于7巢。对雏鸟数据完整的13巢进行分析发现,56只雏鸟中仅5只为婚外子代(占比8.93%)。黄腹山鹪莺的婚外父权比率低于莺科其它种类的平均比率,其较低的婚外父权比率可能与亲鸟在繁殖期较高的资源投入和较强的亲代抚育有关。我们的研究强调了全基因组标记在推断无参考基因组的野生鸟类物种亲缘关系时的价值。
  • Figure  1.  Summary of SNPs and genetic relationships among yellow-bellied prinia individuals

    A: Summary information of SNP number and heterozygosity of all sequenced samples of yellow-bellied prinias (a refers to total SNP number, b refers to homozygous SNPs, c refers to heterozygous SNPs, and d refers to heterozygosity rate). B: Kinship coefficients of individuals within each nest. Dashed red line represents threshold value (0.177) of first-degree relatives and dashed blue line represents threshold value (0.088) of second-degree relatives. Black line indicates zero value of coefficient. C: Neighbor-joining tree based on genetic P-distances between any two individuals using individual SNP genotypes of yellow-bellied prinia (different colors refer to different nests, codes at tips of branches show individual IDs, information about male and female parents (we did not identify the sex of parents in one nest (Nest ID: ZZ), see details in Supplementary Table S1). Red box indicates low kinship coefficients with ‘offspring’ of specific nests.

    Table  1.   Summary of degree of kinship coefficients and number of EPP offspring in each nest of yellow-bellied prinia

    Nest ID.No. of nestlings and parents (n)No. of relationships (n)1st degree relative2nd degree relative3rd degree relativeUnrelatedEPPFull brood
    A615140010No
    AA721164010Yes
    B615140010Yes
    C510100000No
    CC721105243Yes
    D615131010Yes
    F51090010No
    G51053200Yes
    H615100051Yes
    J721200010Yes
    K615140010Yes
    L4650010No
    N51090010Yes
    O2110000No
    q61595010No
    R51060221No
    S3310021No
    SS615140010Yes
    TT615100054No
    U3311010No
    W51081010No
    X721147000Yes
    Z4630121No
    ZZ721123241Yes
    Total129304228299381212/12
    下载: 导出CSV
  • [1] Bonier F, Eikenaar C, Martin PR, Moore IT. 2014. Extrapair paternity rates vary with latitude and elevation in Emberizid sparrows. The American Naturalist, 183(1): 54−61. doi: 10.1086/674130
    [2] Brouwer L, Van De Pol M, Aranzamendi NH, Bain G, Baldassarre DT, Brooker LC, , et al. 2017. Multiple hypotheses explain variation in extra‐pair paternity at different levels in a single bird family. Molecular Ecology, 26(23): 6717−6729. doi: 10.1111/mec.14385
    [3] Brouwer L, Griffith SC. 2019. Extra‐pair paternity in birds. Molecular Ecology, 28(22): 4864−4882. doi: 10.1111/mec.15259
    [4] Burke T, Bruford MW. 1987. DNA fingerprinting in birds. Nature, 327(6118): 149−152. doi: 10.1038/327149a0
    [5] Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. 2013. Stacks: an analysis tool set for population genomics. Molecular Ecology, 22(11): 3124−3140. doi: 10.1111/mec.12354
    [6] Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. 2011. Stacks: building and genotyping loci De novo from short-read sequences. G3, 1(3): 171−182. doi: 10.1534/g3.111.000240
    [7] Cordero PJ, Wetton JH, Parkin DT. 1999. Extra-pair paternity and male badge size in the house sparrow. Journal of Avian Biology, 30(1): 97−102. doi: 10.2307/3677248
    [8] Ding ZF, Zhang WS, Yuan QM, Wang LW, Ren G, Li E, et al. 2020. Determining level of extra-pair paternity in the yellow-bellied prinia, a socially monogamous passerine. Dryad, dataset: https://doi.org/10.5061/dryad.73n5tb2v7.
    [9] Ding ZF, Ji F, Huang QL, Wang LW, Jiang AW, Zhang CL, et al. 2017a. Brood sex ratio in the yellow-bellied prinia (Prinia flaviventris). Avian Research, 8: 15. doi: 10.1186/s40657-017-0074-5
    [10] Ding ZF, Liang JC, Pan XY, Hu HJ. 2016. Feeding behavior and nestling growth of yellow-bellied prinia (Prinia flaviventris). Chinese Journal of Zoology, 51(6): 969−976. (in Chinese)
    [11] Ding ZF, Liang JC, Zhou ZX, Feng YJ, Hu HJ. 2017b. Comparisons of breeding parameters of two prinia species. Chinese Journal of Zoology, 52(3): 417−422. (in Chinese)
    [12] Ding ZF, Tang SX, Zhang JX, Chen YZ, Hu HJ. 2007. Autumn moulting of the adults of yellow-bellied prinia, Prinia flaviventris. Chinese Journal of Zoology, 42(6): 28−33. (in Chinese)
    [13] Dixon A, Ross D, O'Malley SLC, Burke T. 1994. Paternal investment inversely related to degree of extra-pair paternity in the reed bunting. Nature, 371(6499): 698−700. doi: 10.1038/371698a0
    [14] Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 6(5): e19379. doi: 10.1371/journal.pone.0019379
    [15] Felsenstein J. 1993. PHYLIP (Phylogeny Inference Package), version 3.5 c.
    [16] Flanagan SP, Jones AG. 2019. The future of parentage analysis: from microsatellites to SNPs and beyond. Molecular Ecology, 28(3): 544−567. doi: 10.1111/mec.14988
    [17] Gibbs HL, Weatherhead PJ, Boag PT, White BN, Tabak LM, Hoysak DJ. 1990. Realized reproductive success of polygynous red-winged blackbirds revealed by DNA markers. Science, 250(4986): 1394−1397. doi: 10.1126/science.250.4986.1394
    [18] Gowaty PA. 1996. Battles of the sexes and origins of mono-gamy. In: Black JM. Partnerships in Birds: The Study of Monogamy. Oxford: Oxford University Press, 21–52.
    [19] Griffith SC, Owens IPF, Thuman KA. 2002. Extra pair paternity in birds: a review of interspecific variation and adaptive function. Molecular Ecology, 11(11): 2195−2212.
    [20] Hauser L, Baird M, Hilborn R, Seeb LW, Seeb JE. 2011. An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon (Oncorhynchus nerka) population. Molecular Ecology Resources, 11(S1): 150−161.
    [21] Hoi-Leitner M, Hoi H, Romero-Pujante M, Valera F. 1999. Female extra-pair behaviour and environmental quality in the Serin (Serinus serinus): a test of the ‘constrained female hypothesis’. Proceedings of the Royal Society B: Biological Sciences, 266(1423): 1021−1026. doi: 10.1098/rspb.1999.0738
    [22] Hoye BJ, Buttemer WA. 2011. Inexplicable inefficiency of avian molt? Insights from an opportunistically breeding arid-zone species, Lichenostomus penicillatus. PLoS One, 6(2): e16230. doi: 10.1371/journal.pone.0016230
    [23] Huang K, Ritland K, Dunn DW, Qi X, Guo S, Li B. 2016. Estimating relatedness in the presence of null alleles. Genetics, 202(1): 247−260. doi: 10.1534/genetics.114.163956
    [24] Huang K, Mi R, Dunn DW, Wang T, Li B. 2018. Performing parentage analysis in the presence of inbreeding and null alleles. Genetics, 210(4): 1467−1481. doi: 10.1534/genetics.118.301592
    [25] Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5): 1099−1106. doi: 10.1111/j.1365-294X.2007.03089.x
    [26] Lack D. 1968. Ecological Adaptations for Breeding in Birds. Methuen & Co., London.
    [27] Macedo RH, Karubian J, Webster MS. 2008. Extrapair paternity and sexual selection in socially monogamous birds: are tropical birds different?. The Auk, 125(4): 769−777. doi: 10.1525/auk.2008.11008
    [28] Mainwaring MC, Hartley IR. 2013. The energetic costs of nest building in birds. Avian Biology Research, 6(1): 12−17. doi: 10.3184/175815512X13528994072997
    [29] Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. 2010. Robust relationship inference in genome-wide association studies. Bioinformatics, 26(22): 2867−2873. doi: 10.1093/bioinformatics/btq559
    [30] Marshall TC, Slate J, Kruuk LEB, Pemberton JM. 1998. Statistical confidence for likelihood‐based paternity inference in natural populations. Molecular Ecology, 7(5): 639−655. doi: 10.1046/j.1365-294x.1998.00374.x
    [31] Møller AP, Cuervo JJ. 2000. The evolution of paternity and paternal care in birds. Behavioral Ecology, 11(5): 472−485. doi: 10.1093/beheco/11.5.472
    [32] Møller AP, Cuervo JJ. 2003. Sexual selection, germline mutation rate and sperm competition. BMC Evolutionary Biology, 3: 6. doi: 10.1186/1471-2148-3-6
    [33] Morris GP, Grabowski PP, Borevitz JO. 2011. Genomic diversity in switchgrass (Panicum virgatum): from the continental scale to a dune landscape. Molecular Ecology, 20(23): 4938−4952. doi: 10.1111/j.1365-294X.2011.05335.x
    [34] Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford: Oxford University Press.
    [35] Perlut NG, Kelly LM, Zalik NJ, Strong AM. 2012. Male savannah sparrows provide less parental care with increasing paternity loss. Northeastern Naturalist, 19(2): 335−344. doi: 10.1656/045.019.0214
    [36] Petrie M, Doums C, Møller AP. 1998. The degree of extra-pair paternity increases with genetic variability. Proceedings of the National Academy of Sciences of the United States of America, 95(16): 9390−9395. doi: 10.1073/pnas.95.16.9390
    [37] Petrie M, Kempenaers B. 1998. Extra-pair paternity in birds: explaining variation between species and populations. Trends in Ecology & Evolution, 13(2): 52−58.
    [38] Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3): 559−575. doi: 10.1086/519795
    [39] R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
    [40] Remeš V, Freckleton RP, Tökölyi J, Liker A, Székely T. 2015. The evolution of parental cooperation in birds. Proceedings of the National Academy of Sciences of the United States of America, 112(44): 13603−13608. doi: 10.1073/pnas.1512599112
    [41] Rohlf FJ, Sokal RR. 1981. Statistical Tables. 2nd ed. San Francisco, CA: W.H. Freeman.
    [42] Sæther BE. 1988. Pattern of covariation between life-history traits of European birds. Nature, 331(6157): 616−617. doi: 10.1038/331616a0
    [43] Sardell RJ, Keller LF, Arcese P, Bucher T, Reid JM. 2010. Comprehensive paternity assignment: genotype, spatial location and social status in song sparrows, Melospiza melodia. Molecular Ecology, 19(19): 4352−4364. doi: 10.1111/j.1365-294X.2010.04805.x
    [44] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725−2729. doi: 10.1093/molbev/mst197
    [45] Trivers RL. 1972. Parental investment and sexual selection. In: Campbell B. Sexual Selection and the Descent of Man. Chicago: Aldine Press, 136–179.
    [46] Weinman LR, Solomon JW, Rubenstein DR. 2014. A comparison of SNP and microsatellite markers for analysis of parentage and kinship in a cooperatively breeding bird. Molecular Ecology Resources, 15(3): 502−511.
    [47] Westneat DF, Stewart IRK. 2003. Extra-pair paternity in birds: causes, correlates, and conflict. Annual Review of Ecology, Evolution, and Systematics, 34: 365−396. doi: 10.1146/annurev.ecolsys.34.011802.132439
    [48] Yang CC, Wang LW, Cheng SJ, Hsu YC, Liang W, Møller AP. 2014. Nest defenses and egg recognition of yellow-bellied prinia against cuckoo parasitism. Naturwissenschaften, 101(9): 727−734. doi: 10.1007/s00114-014-1209-8
  • ZR-2020-079_Supplementary materials.pdf
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  1014
  • HTML全文浏览量:  525
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 录用日期:  2020-08-26
  • 网络出版日期:  2020-08-30
  • 刊出日期:  2021-01-18

目录

    /

    返回文章
    返回