• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)
Mei-Er GU, Xiao-Ming SONG, Chun-Feng ZHU, Hong-Ping YIN, Gui-Jie LIU, Li-Ping YU, Wei-Wei YANG, Li-Feng NI, Yan-Li ZHANG, Bao-Jin WU. 2014: Breeding and preliminarily phenotyping of a congenic mouse model with alopecia areata. 动物学研究, 35(4): 249-255. DOI: 10.13918/j.issn.2095-8137.2014.4.249
引用本文: Mei-Er GU, Xiao-Ming SONG, Chun-Feng ZHU, Hong-Ping YIN, Gui-Jie LIU, Li-Ping YU, Wei-Wei YANG, Li-Feng NI, Yan-Li ZHANG, Bao-Jin WU. 2014: Breeding and preliminarily phenotyping of a congenic mouse model with alopecia areata. 动物学研究, 35(4): 249-255. DOI: 10.13918/j.issn.2095-8137.2014.4.249
Mei-Er GU, Xiao-Ming SONG, Chun-Feng ZHU, Hong-Ping YIN, Gui-Jie LIU, Li-Ping YU, Wei-Wei YANG, Li-Feng NI, Yan-Li ZHANG, Bao-Jin WU. 2014. Breeding and preliminarily phenotyping of a congenic mouse model with alopecia areata. Zoological Research, 35(4): 249-255. DOI: 10.13918/j.issn.2095-8137.2014.4.249
Citation: Mei-Er GU, Xiao-Ming SONG, Chun-Feng ZHU, Hong-Ping YIN, Gui-Jie LIU, Li-Ping YU, Wei-Wei YANG, Li-Feng NI, Yan-Li ZHANG, Bao-Jin WU. 2014. Breeding and preliminarily phenotyping of a congenic mouse model with alopecia areata. Zoological Research, 35(4): 249-255. DOI: 10.13918/j.issn.2095-8137.2014.4.249

Breeding and preliminarily phenotyping of a congenic mouse model with alopecia areata

Breeding and preliminarily phenotyping of a congenic mouse model with alopecia areata

  • 摘要: In the current study, the alopecia areata gene was introduced into the C57BL/6 (B6) mouse through repeated backcrossing/intercrossing, and the allelic homozygosity of congenic AAtjmice (named B6.KM-AA) was verified using microsatellites. The gross appearance, growth characteristics, pathological changes in skin, and major organs of B6.KM-AA mice were observed. Counts and proportions of CD4+ and CD8+ T lymphocytes in peripheral blood were determined by flow cytometry. Results show that congenic B6.KM-AA mice were obtained after 10 generations of backcrossing/intercrossing. B6.KM-AA mice grew slower than B6 control mice and AA skin lesions were developed by four weeks of age. The number of hair follicles was reduced, but hair structures were normal. Loss of hair during disease progression was associated with CD4+ and CD8+ T lymphocytes infiltration peri-and intra-hair follicles. No pathological changes were found in other organs except for the skin. In the peripheral blood of B6.KM-AA mice, the percentage of CD4+ T cells was lower and percentage of CD8+ T cells higher than in control mice. These findings indicate that B6.KM-AA mice are characterized by a dysfunctional immune system, retarded development and T-cell infiltration mediated hair loss, making them a promising new animal model for human alopecia areata.

     

    Abstract: In the current study, the alopecia areata gene was introduced into the C57BL/6 (B6) mouse through repeated backcrossing/intercrossing, and the allelic homozygosity of congenic AAtjmice (named B6.KM-AA) was verified using microsatellites. The gross appearance, growth characteristics, pathological changes in skin, and major organs of B6.KM-AA mice were observed. Counts and proportions of CD4+ and CD8+ T lymphocytes in peripheral blood were determined by flow cytometry. Results show that congenic B6.KM-AA mice were obtained after 10 generations of backcrossing/intercrossing. B6.KM-AA mice grew slower than B6 control mice and AA skin lesions were developed by four weeks of age. The number of hair follicles was reduced, but hair structures were normal. Loss of hair during disease progression was associated with CD4+ and CD8+ T lymphocytes infiltration peri-and intra-hair follicles. No pathological changes were found in other organs except for the skin. In the peripheral blood of B6.KM-AA mice, the percentage of CD4+ T cells was lower and percentage of CD8+ T cells higher than in control mice. These findings indicate that B6.KM-AA mice are characterized by a dysfunctional immune system, retarded development and T-cell infiltration mediated hair loss, making them a promising new animal model for human alopecia areata.

     

/

返回文章
返回