高原鼠兔种群繁殖生态的研究

王学宜 谢克华
（中国科学院西北高原生物研究所）

摘要

1985—1988年，在青海省黑河河谷地区以野外法对高原鼠兔的繁殖进行了研究。在繁殖群体中主要是来自上年出生的第1、2胎的鼠兔（83.85%），第3胎和第4胎所占少数。成年雌鼠兔100%参加繁殖，通常每年产3胎，有的年份可达4胎或5胎。早产数1—8只（平均为4.82±0.12），1只雌鼠兔终生可产2—20只。妊娠期为28.2±0.13天。断乳期为11.65±0.01天。有的年份当年出生的少部分雌鼠兔到36.8±3.05月龄达到成年成熟并参加繁殖，生1—2胎。雄鼠兔性成熟较晚。

关键词：高原鼠兔，繁殖生态

材料与方法

关于该地区的自然环境及工作方法，已有报道（Smith等，1986；王学高等，1988，1980），不再赘述。

在鼠兔繁殖开始之前，将样地鼠兔进行全部捕捉与标记。随后进行逐个行为的定位

本研究系国家“七五”科技攻关基金资助。
本文曾在中国动物学会五周年学术讨论会上宣读，承蒙夏克平教授热忱指导，特此致谢。
本文1980年8月18日收到，同年3月29日赐回。
观察，确定异雄鼠的配偶关系，并以家蝇为单元连续跟踪观察其成员之间的社会行为，特别注重对配偶间行为的观察。同时也注意外来雌鼠的性侵略及配偶的改变情况。详细记录交配日期，孕鼠的行为以及体态变化，产仔日期，幼鼠首次出洞日期和出洞只数等，并及时箍兔及鉴定性别。

结果与讨论

2. 繁殖群体结构 研究动物的年龄结构及其性比对了解种群密度及动态很有必要，特别是参加繁殖的群体年龄结构及其性比，因为种群的繁殖力与年龄、性比及配偶改变有关（王学高等，1988）。现将历年繁殖期标志种群中各年龄的鼠鼠数绘出图1。图中的日期是根据种群繁殖期和幼鼠出生日（最早出生日4月23日）和怀孕期推算。

由图1可知，参加繁殖的群体中，主要成员来自上年出生的第1、2胎鼠鼠，第3胎和老体（参加第2次繁殖的个体）占少数。它们之间性比为0.4857。雌鼠鼠数多于雄鼠鼠。

3. 妊娠期和哺乳期 (1) 妊娠期 根据1987年91例鼠鼠的受孕过程及到产仔日统计结果，鼠鼠怀孕期为22.2±0.13天。 (2) 哺乳期 子鼠鼠出生后经过一段时期的哺乳。幼鼠鼠出洞后，母鼠鼠对其仔鼠鼠的哺乳一般采取回避行为。因此，在洞外一般见不到幼鼠鼠哺乳。笔者把仔鼠鼠出生后，在洞内哺乳的这段时间称之为洞内哺乳期。依据1987年68胎幼鼠鼠从出生到出洞统计结果，在洞内哺乳期为11.65±0.01天。结果与施银柱等（1978）的报道基本相符。另外仔鼠鼠出生后，哺乳期视怀孕而怀孕的现象称之为哺乳一妊娠重叠。

4. 生殖力 动物的生殖力是反应雌性动物产生新个体的能力。一般包括动物性成熟速度、胎仔数、胎数等。现将历年鼠鼠繁殖资料列于表1。

由表1可以看出，(1) 年数 鼠鼠的年数数与其繁殖期长短有关。繁殖期延长的年份，产仔数多，反之，则少。1986年繁殖期为3个月，产3胎；1987年为4个月
表 1 高原鼠兔繁殖特征

Table 1. The breeding characteristics of female Plateau pika

<table>
<thead>
<tr>
<th>年代某期</th>
<th>胎次</th>
<th>怀孕期(%)</th>
<th>存活率(%)</th>
<th>平均产仔数</th>
<th>性比（♂/♀+♀）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985年4月初--7月上旬</td>
<td>L₁</td>
<td>100</td>
<td>100</td>
<td>4.33±0.19</td>
<td>0.5208</td>
</tr>
<tr>
<td>1985年4月初--7月上旬</td>
<td>L₂</td>
<td>100</td>
<td>100</td>
<td>5.34±0.30</td>
<td>0.5682</td>
</tr>
<tr>
<td>1985年4月初--7月上旬</td>
<td>L₃</td>
<td>100</td>
<td>100</td>
<td>6.00±0.45</td>
<td>--</td>
</tr>
<tr>
<td>1985年4月初--7月上旬</td>
<td>L₄</td>
<td>100</td>
<td>100</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1985年4月初--7月上旬</td>
<td>L₅</td>
<td>100</td>
<td>100</td>
<td>3.53±0.40</td>
<td>0.5676</td>
</tr>
<tr>
<td>1985年4月初--7月上旬</td>
<td>L₆</td>
<td>100</td>
<td>100</td>
<td>4.33±0.43</td>
<td>0.4934</td>
</tr>
<tr>
<td>1985年4月初--7月上旬</td>
<td>L₇</td>
<td>100</td>
<td>100</td>
<td>5.22±0.32</td>
<td>0.4878</td>
</tr>
<tr>
<td>1985年4月初--7月上旬</td>
<td>L₈</td>
<td>100</td>
<td>100</td>
<td>6.22±0.42</td>
<td>0.4594</td>
</tr>
<tr>
<td>1985年4月初--7月上旬</td>
<td>L₉</td>
<td>100</td>
<td>100</td>
<td>5.08±0.31</td>
<td>0.5000</td>
</tr>
<tr>
<td>1985年4月初--7月上旬</td>
<td>L₁₀</td>
<td>100</td>
<td>100</td>
<td>5.00±0.50</td>
<td>0.5000</td>
</tr>
<tr>
<td>1985年4月初--7月上旬</td>
<td>L₁₁</td>
<td>100</td>
<td>100</td>
<td>4.33±0.05</td>
<td>0.5000</td>
</tr>
<tr>
<td>1985年4月初--7月上旬</td>
<td>L₁₂</td>
<td>100</td>
<td>100</td>
<td>4.33±0.30</td>
<td>0.5000</td>
</tr>
</tbody>
</table>

月，产5胎。其结果与草原鼠兔（O. pustula）的胎数（Ognev，1940；Шубин，1965）相同。仅高于达乌尔鼠兔（O. dauurica）（1－3胎）（Зеевгыдзім，1975）。

（2）怀孕期及胎次存活率 1985－1988年，成体雌鼠兔的怀孕率，除第5胎怀孕率较低外，多数为100％（1－4胎），与以往报道（张若，1985；施集，1978；沈世芬等，1984）不同。1988年怀孕率下降，可能是种群密度降低（5月上旬为1.28只/公顷），空间分布离散，社会行为处于高度恐惧状态，造成某些雌鼠兔不能怀孕。

胎次存活率是反应不同胎次出生的幼鼠兔经过洞内哺乳期后的存活率。存活率低于怀孕率，其原因为由于个别亲鼠兔转移巢或死亡，有的幼鼠兔体质不佳（第4、5胎幼鼠兔出生后，不久几乎全部死亡），以及在幼鼠兔出洞前遇到连续寒冷灾害性冰雪天气，也会影响幼鼠兔的存活率。如1987年4月30日－5月13日期间常持续降雪，以致5月上旬均温仅0℃，而其它年份同期相比低3.0－6.5℃，又因风盛，地面积雪复盖面积在65％以上，一次长达7天。当时正处在第1胎幼鼠兔洞内哺乳期，亲鼠兔采食困难，影响幼仔抚育，造成80.65％的第1胎未能出洞。1988年胎次存活率明显下降，该年种群密度低且不平稳。亲鼠兔转巢后死亡增加，以及食肉动物（尤其是香鼬Mustela altaica）出入洞穴频繁，也增加了幼鼠兔在洞内被咬死的可能。

（3）产仔数 在鼠兔繁殖种群中，雌鼠兔终生最少产2只，最多29只。每胎产仔数为1－8只，平均为4.52±0.13只。但低于草原鼠兔（胎仔数3－13只，平均为8.7，8.5）和达乌尔鼠兔（平均胎仔数7.7）（Ognev，1940；Шубин，1965；Зеевгыдзім，
1975）。另外有少数个体（5.71%），仅有两年繁殖。如644号雌鼠兔，1986年产仔1只，1987年产18只，共计29只。

为进行胎仔数的比较，今将观察各年获胎仔数及年产仔数绘图2、3。

![图2：成年雌兔平均产仔数（每胎±S.E.）](image1)

图2. The average number of litter size of adult females per litter time.

![图3：每只雌兔年平均产仔数（每胎±S.E.）](image2)

图3. Annual average number of litter size each adult female.

由图2所示，1985—1986年，平均胎仔数随着胎数的增加而增加，胎次间差异非常明显（1985年，第1胎与第2胎，t = 2.964 > t 0.01；第1胎与第3胎，t = 3.437 > t 0.01）；1986年，第1胎与第3胎，t = 3.2807 > t 0.01）。1987年第1胎出生的鼠兔在洞内哺乳期时遇到大雪导致31胎幼鼠兔只发现6胎出洞，平均产仔数高于上两年，这可能由于样本少所造成。第2胎的产仔数与第3胎相比，t = 2.014 > t 0.05，差异显著。与1986年第2胎相比平均产仔数基本相同。由此看来，1987年前3胎产仔数亦随着胎次增加而呈现上升趋势。从第4胎开始产仔数下降，第5胎下降最为明显。这可能是繁殖后期，雌鼠兔繁殖数下降或仔鼠兔体质下降，死亡率增加等原因。1988年产仔数极度下降，种群密度降低。

由图3所示，1985年雌鼠兔年平均产仔数最高。1986年明显下降，与1987年相近，1988年产仔数最低。经t检验结果，1985年产仔数显著地高于1986年（t = 2.883 > t 0.05）。1987年与1988年相比（t = 6.1848 > t 0.01）差异也明显显著。

（4）幼鼠兔性比　将历年同胎次和异胎次以及同年幼鼠兔性比进行比较分析列于表2。

<table>
<thead>
<tr>
<th>年份</th>
<th>性比</th>
<th>t 值</th>
<th>卡方</th>
<th>结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>L1:25:23</td>
<td>1.345</td>
<td>0.05</td>
<td>X²=0.055<0.05</td>
</tr>
<tr>
<td></td>
<td>L2:31:30</td>
<td>2.04</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>L1:23:19</td>
<td>0.048</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L2:22:25</td>
<td>0.910</td>
<td>0.05</td>
<td>X²=0.997<0.05</td>
</tr>
<tr>
<td></td>
<td>L3:20:21</td>
<td>0.540</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>L1:14:14</td>
<td>0.723</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L2:44:07</td>
<td>2.539</td>
<td>0.01</td>
<td>X²=8.477>0.05</td>
</tr>
<tr>
<td></td>
<td>L3:42:86</td>
<td>3.256</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L4:16:51</td>
<td>1.687</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L5:1:2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>L1:22:24</td>
<td></td>
<td></td>
<td>X²=0.288<0.05</td>
</tr>
</tbody>
</table>

所致，导致幼鼠兔性比失调，从1988年种群密度下降。

（5）性成熟速度：栖息于草原类型的鼠兔种群繁殖率高，有些种类的鼠兔当年出生即可性成熟并繁殖（Smith等，1985）。在黑龙江地区，1984、1985和1987年均观察到一些第1胎雌性幼体达到性成熟，产生性行为的个体。在1987年当年出生的鼠兔生第1胎，性成熟最小日龄为23天，平均为36.8±3.05天（样本数为10，变动范围23—50天），与Hurry（1965）报道的草原鼠兔性成熟速度（28—35天）基本上相近；与Zsivgyomid（1975）报道的达乌尔鼠兔（21天）慢。当年出生的第2胎雌性未观察到性成熟个体。另外，在考虑动物性成熟时，一般不涉及雄性，但作者观察到当年出生的雄性，有的也参加了交配行为，表示该鼠兔已达到性成熟。如第1胎雌雄鼠兔性成熟最小日龄为28天，平均为39.8±2.6天（样本数为7，变动范围23—49天）。由此看来雄性比雌性性成熟晚些。第2胎雄鼠兔只观察到3只产生交配行为，它们的平均日龄为31.33±1.33天。

在性成熟的个体中，它们当年产生的性行为均在同巢区进行。其远亲交配率为62.50%。1987年5月28日，首次观察到2只大幼体（763号和765号）交配后怀孕，各生1胎。后来（6月19日）又发现交配行为，再各生1胎。但它们所生下的幼仔在1个月之内全部死亡。另外在5月14日观察到由非亲雄性（16号）与同巢的2只大幼体（770号和773号）产生交配行为各生1胎，出洞后也很快死亡。由此可见，即便出生的幼体当年达到性成熟并参加繁殖，但其幼仔大多不能存活，对维持鼠兔种群及传代作用甚小。
参考文献

王学高、Andrew T. Smith 1988 高原鼠兔（Ochotona curzoniae）冬季自然死亡率。鸟类学报 8 (2):152-156。
王学高、杨克华 1989 高原鼠兔（Ochotona curzoniae）自然死亡率的研究。鸟类学报 8 (1):58-62。
王临祥、黄世海、段志敏 1988 高原鼠兔的生态期。动物学研究 8 (2):201-207。
李学杰、杨勇 1986 鼠兔属一研究。动物学报 32 (4):275-279。
沈世英、陈一平 1984 青海省西北部高原鼠兔生态学初步研究。鸟类学报 4 (2):107-115。
张应, 林永辉 1985 高原鼠兔属的生态期研究。动物学杂志 8 (2):48-58。
施升林, 韩万昌, 王学高等 1977 高原鼠兔群落群及繁殖的研究。鸟类学报动物学研究报告, 第三集, 104-112页。

Miller, J. S. 1973 Evolution of litter-size in the pikas, Ochotona princeps (Richardson). Ecol. 27:134-141。
Ognev, C. I. 1940 Звери СССР и прилегающих стран, т. ч. Грызуны. Изд-во АН СССР, М. Л. Шубин, И. Г. 1965 Размножение Малой пикша Зоол. ж. 6:917-924。

STUDIES ON THE POPULATION REPRODUCTION ECOLOGY OF PLATEAU PIKA

Wang Xuegao Dai Kehua

(Northwest Plateau Institute of Biology, Academia Sinica)

The studies on the reproduction ecology of Plateau pika (Ochotona curzoniae), as a part of a five-year (1984-1988) project of the behavioural ecology of the species, have been carried out at Heimahe area during from 1985-1988. The area we surveyed is near southwestern border of Qinghai Lake, Qinghai Province, The results of our investigations are briefly mentioned as follows;

The beginning and ending of breeding period as well as the number of the pregnant time on Plateau pika usually varies with years according to our firsthand observations (see Table 1).

From an analysis of the data on reproduction, it may be seen that the
breeding population are composed mostly of the first and second litter of pikas
born in the preceding year, occupying 57.14% and 25.71% respectively of the
total number of the breeding population, while the remaining 17.15% consists
of the third litter of pikas and old individuals.

The range of the litter size of Plateau pika varies from one to eight
young at a time, averaging 4.52 ± 0.12. Usually three litters are produced by
a female during one year, sometimes female can give birth to four or five
litters. All the adult females are found to take part in reproduction. Altogether
2 — 29 young may be born in the female’s all life. The gestation period of the
species is usually 22.2 ± 0.13 days on an average. The suckling period in
burrows where female’s breast- feed their young is 11.65 ± 0.01 days based on
our observations in the field.

Only a few of first litter of young born in the present year, have been
found to reach sexual maturation during summer. However, there are indications
that the period of sex maturity of the females is earlier than that of the males
(35.8 ± 3.05 days as against 39.6 ± 2.6 days on average).

Key words: Ochotona curzoniae, Reproduction ecology

资料

牛蛙的营养成份

ASSAY OF THE COMMON NUTRITIONAL COMPOSITIONS ON THE BULLFROG (*Rana catesbeiana*)

关键字: 牛蛙，营养成份

Key words: Bullfrog (*Rana catesbeiana*) Nutritional compositions

我们在“牛蛙人工养殖”的研究过程中，分析了牛蛙的一般营养成份（表1），并进行了氨基酸含量分析（表2）。

材料: 本研究所用的成蛙120日龄的牛蛙，将其解体后4次分析，并列出其平均值。

方法: 水份——蒸馏法；灰份——改进过滤灼烧法；脂肪——索氏提取法；蛋白质——凯氏定氮法；总糖——

1,6-二硝基水杨酸比色法；钙——高锰酸钾滴定法；磷——钼酸铵比色法；铁——双硫腙法；氨基酸——离子交换色谱。将牛蛙尾部新鲜肌肉称样10mg，匀浆后用6 Mol/l 硫酸在910 ℃下水解24小时，按酸、定容、离心，参考 LKB

4400氨基酸自动分析仪分析，由LKB3190积分仪计算。

承蒙李大同副研究员的热情指导，特此致谢。

本工作得到云南应用基础科学研究基金资助。

本文1995年7月9日收到，同年8月11日修图。