野生动物（Macaca mulatta）通讯行为的初步研究

江海声 马敏 林淑然

（华南师范大学动物研究所，广州）

摘要

本文报道了野生动物通讯行为的初步研究结果。分别观察成年雄性和幼猴的叫声和求偶行为。猴群正常时的叫声自然轻松，有时发出一些尖锐。在观察成年雄猴的叫声为“kē”，幼猴叫为“ai”。其最大共振频率分别为900Hz和1400Hz。受惊时叫声警觉，双目圆睁，张口，两嘴角外翘。成年

雄猴和幼猴分别发出“kē”和“ài”的叫声，其最大共振频率分别为550Hz和350Hz，与正常叫声相比，

猴叫声的最大共振频率降低，各音叫声持续的时间较短。

关键词：猕猴，通讯，叫声，面部表情

目前国内外对灵长类动物声音通讯的研究非常活跃。有的从灵长类动物的分类及地理种群差异的角度研究其声音的成分（Herzog et al., 1984），有的研究动物取食行为与声音通讯行为间的关系（Dittus, 1984），有的研究声音行为在动物社群结构中的作用（Cheney, 1982; Gouzoules et al., 1984），这些研究主要着眼于声音通讯。

动物通讯是两个动物间的信息交流，这种信息包括任何一种特定的符号或生理变化。这正是动物的声音、表情、改易的化学物质等。动物在信息交流时经常是多种信息的复合交流，例如声音和表情或者姿势通常是一起的。所以在研究动物的通讯行为时综合各种信息加以研究，就可能导致特定形式的信息在某种动物通讯中的作用，进而为通讯信息研究动物的系统发育问题。作者在研究了海南岛南部野生猕猴活动习性的基础上（江海声等，1988），对猕猴（Macaca mulatta）的通讯行为作了初步研究。

* 本文发表前中国科学院生物物理研究所锦昌先生指导和帮助声谱分析，周亚政同志帮助，谨此谢意。

本文1988年10月28日收到，1989年7月3日修稿。
材料和方法

在海南岛东南角的南湾野生珍贵动物自然保护区内的猕猴，它们每天上午8时许来到喂食点取食，这时有大量的游客围观，猴子无畏惧感。研究者在猕猴群中观察其行为。

当基本无游客时，在现场距离猴子约2米处，对成年猕猴及幼年猕猴的正常及受惊状态下所发出的鸣声，使用SONY-TCM-5型录音机（频响150—8000Hz）直接录音，同时拍照并现场录音。

记录到的声音经SHARP-GF-515型录音机（频响30—14000Hz）节选后，直接输入R-602B型谱仪仪（SONA-GRAPH，美KAY公司）进行谱图和功率谱分析，频响选择为HS（1至9kHz，每倍频程提升6dB）。

结果及分析

平时猕猴在无任何惊扰时，表现出一种怡然自得的样子。无论是成年猕猴或幼年猕，其表情安详，面部肌肉处于松弛状态，整个身体也无异常反应。

在取食或休息时，成年雌体有时发出一种短促的鸣声。这种声音在听觉上感觉低沉，而且每个个体这种叫声通常是不连续的，但当一个个体发出这样的声音后，通常其它个体也跟着发出这样的叫声。这种叫声似乎表明一种安全、和顺的感觉（图1a）。这种叫声“he”，在谱图上（图2a）表现为频率350Hz、900Hz、1500Hz、2000Hz和2700Hz等五个共振峰，持续时间为0.8秒，能量相对集中在以上五个共振峰附近。在3kHz以上仍有一些较高频率的共振峰，但其能量相对很少。

在其功率谱（图2b）中最大共振频率$f_{max}=900Hz$，下降10dB的频带宽（有效频带）$BW_{10db}=1500Hz$，即叫声的主要能量集中在1.5kHz以下，也就是说其主要的共振峰频率PF为350Hz、900Hz和1500Hz（图中1、1、1）。
幼年猴时会发出“en”叫声并有安详的表情(图1b)。这种叫声通常亦不连续，有时则只发出2—3声这样的叫声，每次间隔也在约几秒以上。这种叫声的调图（图2c）表明它由500Hz、1000Hz、2000Hz和3000Hz等4个共振峰组成，持续时间约为0.7秒，每个共振峰的频率和幼年猕猴正常叫声一样，较为集中。

图2d是幼年猴正常叫声的功率谱图，其最大共振峰频率fo = 1000Hz，下降10dB的频带宽BWfo = 1000Hz，即主要共振峰频率（BF）为1000Hz和2000Hz（图2d中I、II）。与成年猴正常叫声比较，其高频衰减更快，且共振峰的能量相对较高。猕猴在受到威胁时，立即进入应急状态（图3）。这时其面部表情显得紧张，双目圆睁，微张口，两边鼻角外拉，面颊肌有一种横向的感觉。两个耳朵向后贴近头颅，毛发耸立，这一点在幼年猴尤为突出。

这时成年猕猴发出一串“kè，kè……”单叫声组成的惊叫声。在听觉感受上，每个单叫声“kè”的音色基本相同，随着听觉、对抗程度的加强，单叫声的强度、次数和发
声速度会有所增加。在受惊时发出这样的鸣声具有双重意义，第一是向对方“认输”，在鸣叫时伴随着前后的下屈，头处于低处，仰目对方，以赢得对方的“怜悯”或“原谅”。第二意义是呼救，以求得同伴的帮助，在鸣叫的同时伴随着身体位置的调整，时常观察着同伴的态度。如有同伴救助，表现为“很多势众”，势不可挡的架势，叫声由“kē，kē……”声转为吼叫声。如果没有同伴相助，往往趁势而逃，并伴有更惨的惊叫声。

图 3 常见受惊时的表情
Fig. 3. Facial expression of frightened state

图 4a 是由 4 个单叫声（kē）组成的惊叫声图。各单叫声的时间分别为 0.3 秒、0.4 秒、0.4 秒和 0.42 秒。各单叫声“kē”之间的时间间隔有一定的差异，且从惊叫的开始到结束，各单叫声的 4kHz 以上的频率分量渐渐减弱，但 4kHz 以下的频率分量结构相似，成噪音声谱。

图 4b 为 S1 功率谱图，其最大共振峰频率 f_{max} = 550Hz，下降 10dB 的带宽 BW_{10dB} = 2200Hz，即其主要能量集中在 2kHz 以下的频率处，其功率谱的高频衰减较正常叫声弱。

幼年猴受惊时会发出“gie，gie……”的惊叫声。而且一个幼猴发出这样的叫声后，通常会引起其它幼猴发出同样的声音。这时雌猴们都会前来照料各自的仔猴。

图 4c 是由两个“gie”组成的惊叫声的谱图。每个单叫声“gie”持续时间分别为 0.3 秒和 0.42 秒。第一单叫声 S1 在 4kHz 以上的频率分量远较第二单叫声丰富，在 4kHz 以下，两者在频率分量上相近，但在时间上有较大的差异。第二单叫声较短，S1 在能量分布上有较大的间断，与正常叫声比较共振峰不明显，成噪声谱。

图 4d 是 S2 功率谱图，其最大共振峰频率 f_{max} = 350kHz 下降 10dB 的带宽 BW_{10dB} = 3kHz，即其主要能量分布在 3kHz 以下。

讨 论

对南湾成年雌猴和幼猴的正常叫声和受惊状态下的叫声比较可以分出，正常叫声由共振峰组成，而共振峰是由于“声带”产生的声音经声道的共振而使某些频数的谐波
能量得到加强而形成的共振谐波。受惊状态的叫声则成噪音谐，而谐波分布已不是主要特征。但是，由惊叫声的功率谱仍可见其有效频带（BW）内的共振谐波（图1b中I、II、III分别为550Hz、1200Hz、2200Hz），图4d中I、II、III分别为3Hz、1kHz、2kHz）。Gouzoules等（1984）对圣地亚哥岛上的猕猴声音通讯的分析表明，多数声音是谐波组成的。Dittus（1984）对斯里兰卡西班犬猴（Macaca sinica）的声谱分析也是由谐波组成的。但是长臂猴（Hylobates sp.）的鸣声结构中谐波成份则极少（Geissman，1984；Hainoff，1984a，b）。

南湾猕猴几种叫声的共振谐波频率一般为350（550）Hz、1000Hz、2000Hz和3000Hz附近（正常叫声较明显，而惊叫声则不明显）。这与猴子的发声器官结构有密切的关系；而在不同状态下，其叫声结构的变化仅表现为某些谐波的能最相对增加或减少，以及各谱波本身的有效频带的变化而已（如惊叫时，由于声带气流的加速和增强而使各谐波频率附近的频率份量增加而形成噪音谐）。
与正常叫声比较，无论是成年雄性或幼年猴在受惊时其发出的叫声结构的最大共振峰频率明显降低，而且其高频成份减少，各谐波的有效频带增大，各单声持续的时间也较短。

Southwick等（1974）指出长臂猴、吼猴等的通讯中鸣叫—听觉模式是主要的，而大多数地栖的猕猴属和狒狒类的通讯中表情—视觉模式为主导。不同动物其通讯模式的不同与其栖息环境和生活方式的不同有关。黑猩猩有着丰富的表情姿势，同时它也有声音通讯（珍珠・古多尔，1980）。而只有类才极大地发展了声音通讯和表情姿势通讯，并将两者有机地结合起来。因此在研究动物通讯时，将鸣声—听觉通讯模式和表情—视觉通讯模式结合起来观察研究，则将为研究动物的系统发育及“语音”的演变及进化提供基础资料。

参考文献
卢德军等 1986 猴属电性叫声的声学分析，生态学报 6(1):87—98。
江河声等 1988 河南昌合动物园的活动习性，兽类学报 8(4):264—278。
朱峰、张智芹 1987 大熊猫〈Ailuropoda melanoleuca〉受惊后叫声及其行为意义，动物学报 33(3):285—292。
韩联宽等 1988 白眉猴鸣叫声的声学分析，动物学研究 6(2):127—132。
黄铭等 1986 非洲黑狐（G. africana Pelicot de Beaufort）的鸣声特点，生物学通报 1(4):279—286。
Haimoff, E. H. 1984a The organization of song in the agile gibbon (Hylobates agilis). Folia primatol., 42:42—61。
Hearneg, M. O. & G. M. Howmann 1984 Male loud calls in Macaca silenus and Presbytis johnii, a comparison. Folia primatol., 42:189—197。
PRELIMINARY INVESTIGATION ON
COMMUNICATION BEHAVIOR OF RHESUS
MONKEY Macaca mulatta IN FILED

Jiang Haisheng Feng Ming Lin Shuran
(South China Institute of Endangered Animals, 105 Xingang West Road, Guangzhou)

This paper report the preliminary investigation on communication behavior of rhesus monkey in field. The macaques were relaxed on normal state, and sometimes they made a kind of normal call. The call of adult female was "he" with max vibrating peak frequency F_{max} being 900 Hz, and the call of infant was "en" with F_{max} being 1000 Hz. The frightened call of adult female and infant was "ke" and "gie" with F_{max} being 550 Hz and 350 Hz. The frightened female monkey opened her eyes wide and her facial expression was nervous. Comparing with normal call, the range of best frequency BF was smaller, F_{max} was lower, and the time of one syllable was shorter in frightened call.

Key words: Rhesus monkey (Macaca mulatta), Communication, Call, Facial expression