Zhiheng GOU, Xiao WANG, Wen WANG. Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors. Zoological Research, 2012, 33(E5-6): 75-81. doi: 10.3724/SP.J.1141.2012.E05-06E75
Citation: Zhiheng GOU, Xiao WANG, Wen WANG. Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors. Zoological Research, 2012, 33(E5-6): 75-81. doi: 10.3724/SP.J.1141.2012.E05-06E75

Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors

doi: 10.3724/SP.J.1141.2012.E05-06E75
  • Received Date: 2012-09-20
  • Rev Recd Date: 2012-11-20
  • Publish Date: 2012-12-08
  • Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of mammals, insects, round worm, and platyhelminths, while their receptors are quite diversified across different animal phyla. However, the evolutionary mechanisms between the two conserved neurotransmitters and their diversified receptors remain elusive, and antagonistic interactions between GABA and glutamate signal transduction systems, in particular, have begun to attract significant attention. In this review, we summarize the extant results on the origin and evolution of GABA and glutamate, as well as their receptors, and analyze possible evolutionary processes and phylogenetic relationships of various GABAs and glutamate receptors. We further discuss the evolutionary history of Excitatory/Neutral Amino Acid Transporter (EAAT), a transport protein, which plays an important role in the GABA-glutamate “yin and yang” balanced regulation. Finally, based on current advances, we propose several potential directions of future research.
  • loading
  • [1]
    Bargmann CI. 1998. Neurobiology of the Caenorhabditis elegans genome. Science, 282(5396): 2028-2033.
    Barnard E, Skolnick P, Olsen R, Mohler H, Sieghart W, Biggio G, Braestrup C, Bateson A, Langer S. 1998. International Union of Pharmacology. XV. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev, 50(2): 291-314.
    Beg AA, Jorgensen EM. 2003. EXP-1 is an excitatory GABA-gated cation channel. Nat Neurosci, 6(11): 1145-1152.
    Bouché N, Fromm H. 2004. GABA in plants: just a metabolite? Trends Plant Sci, 9(3): 110-115.
    Brockie PJ, Madsen DM, Zheng Y, Mellem J, Maricq AV. 2001. Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J Neurosci, 21(5): 1510-1522.
    Cao JH, Huang SL, Qian J, Huang JL, Jin LX, Su Z, Yang J, Liu JF. 2009. Evolution of the class C GPCR Venus flytrap modules involved positive selected functional divergence. BMC Evol Biol, 9(1): 67.
    Chang Y, Wang R, Barot S, Weiss DS. 1996. Stoichiometry of a recombinant GABAA receptor. J Neurosci, 16(17): 5415-5424.
    Chebib M, Johnston GAR. 1999. The ‘ABC’of GABA receptors: a brief review. Clin Exp Pharmacol Physiol, 26(11): 937-940.
    Chiu J, DeSalle R, Lam HM, Meisel L, Coruzzi G. 1999. Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol, 16(6): 826-838.
    Cully DF, Paress PS, Liu KK, Schaeffer JM, Arena JP. 1996. Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J Biol Chem, 271(33): 20187-20191.
    Darlison MG, Pahal I, Thode C. 2005. Consequences of the evolution of the GABAA receptor gene family. Cell Mol Neurobiol, 25(3): 607-624.
    Davis RE, Stretton AOW. 1995. Biochemistry and Molecular Biology of Parasites. Sandiego: Academic Press Inc.
    DeFeudis FV. 1975. Amino acids as central neurotransmitters. Annu Rev Pharmacol, 15(1): 105-130.
    Devaud JM, Clouet-Redt C, Bockaert J, Grau Y, Parmentier ML. 2008. Widespread brain distribution of the Drosophila metabotropic glutamate receptor. Neuroreport, 19(3): 367-371.
    Fiorillo CD, Williams JT. 1998. Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature, 394(6688): 78-82.
    Gassmann M, Bettler B. 2012. Regulation of neuronal GABAB receptor functions by subunit composition. Nat Rev Neurosci, 13(6): 380-394.
    Gerschenfeld HM. 1973. Chemical transmission in invertebrate central nervous systems and neuromuscular junctions. Physiol Rev, 53(1): 1-119.
    Gesemann M, Lesslauer A, Maurer CM, Schönthaler HB, Neuhauss SCF. 2010. Phylogenetic analysis of the vertebrate Excitatory/Neutral Amino Acid Transporter (SLC1/EAAT) family reveals lineage specific subfamilies. BMC Evol Biol, 10(1): 117.
    Gordon JA. 2010. Testing the glutamate hypothesis of schizophrenia. Nat Neurosci, 13(1): 2-4.
    Héja L, Barabás P, Nyitrai G, Kékesi KA, Lasztóczi B, Toke O, Tárkányi G, Madsen K, Schousboe A, Dobolyi á, Palkovits M, Kardos J. 2009. Glutamate uptake triggers transporter-mediated GABA release from astrocytes. PLoS ONE, 4(9): e7153.
    Hosie A, Sattelle D, Aronstein K. 1997. Molecular biology of insect neuronal GABA receptors. Trends Neurosci, 20(12): 578-583.
    Kass-Simon G, Scappaticci A Jr. 2004. Glutamatergic and GABAnergic control in the tentacle effector systems of Hydra vulgaris. Hydrobiologia, 2004, 178(530-531): 67-71.
    Kass-Simon G, Pannaccione A, Pierobon P. 2003. GABA and glutamate receptors are involved in modulating pacemaker activity in hydra. Comp Biochem Physiol A Mol Integr Physiol, 136(2): 329-342.
    Kehoe J, Marder E. 1976. Identification and effects of neural transmitters in invertebrates. Annu Rev Pharmacol Toxicol, 16(1): 245-268.
    Lü BZ, Tian Y. 1991. Receptor Introduction. Beijng: Beijing Science Press: 923-930. (in Chinese)
    Martínez-Delgado G, Estrada-Mondragón A, Miledi R, Martínez-Torres A. 2010. An update on GABAρ receptors. Curr Neuropharmacol, 8(4): 422-433.
    McIntire SL, Jorgensen E, Kaplan J, Horvitz HR. 1993. The GABAergic nervous system of Caenorhabditis elegans. Nature, 364(6435): 337-341.
    Mezler M, Müller T, Raming K. 2001. Cloning and functional expression of GABAB receptors from Drosophila. Eur J Neurosci, 13(3): 477-486.
    Müller WE. 1998. Origin of Metazoa: sponges as living fossils. Naturwissenschaften, 85(1): 11-25.
    Nakanishi S. 1992. Molecular diversity of glutamate receptors and implications for brain function. Science, 258(5082): 597-603.
    Ortells MO, Lunt GG. 1995. Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci, 18(3): 121-127.
    Perovic S, Krasko A, Prokic I, Müller IM, Müller WEG. 1999. Origin of neuronal-like receptors in Metazoa: cloning of a metabotropic glutamate/GABA-like receptor from the marine sponge Geodia cydonium. Cell Tissue Res, 296(2): 395-404.
    Ribeiro P, El-Shehabi F, Patocka N. 2005. Classical transmitters and their receptors in flatworms. Parasitology, 131(S1): S19-S40.
    Ryan TJ, Grant SGN. 2009. The origin and evolution of synapses. Nat Rev Neurosci, 10(10): 701-712.
    Schuske K, Beg AA, Jorgensen EM. 2004. The GABA nervous system in C. elegans. Trends Neurosci, 27(7): 407-414.
    Segerberg MA, Stretton A. 1993. Actions of cholinergic drugs in the nematode Ascaris suum. Complex pharmacology of muscle and motorneurons. J Gen Physiol, 101(2): 271-296.
    Shimada S, Cutting G, Uhl G. 1992. gamma-Aminobutyric acid A or C receptor? gamma-Aminobutyric acid rho 1 receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive gamma-aminobutyric acid responses in Xenopus oocytes. Mol Pharmacol, 41(4): 683-687.
    Swensen AM, Golowasch J, Christie AE, Coleman MJ, Nusbaum MP, Marder E. 2000. GABA and responses to GABA in the stomatogastric
    ganglion of the crab Cancer borealis. J Exp Biol, 203(14): 2075-2092.
    Tretter V, Ehya N, Fuchs K, Sieghart W. 1997. Stoichiometry and assembly of a recombinant GABAA receptor subtype. J Neurosci, 17(8): 2728-2737.
    Tsang SY, Ng SK, Xu Z, Xue H. 2007. The evolution of GABAA receptor-like genes. Mol Biol Evol, 24(2): 599-610.
    Vassilatis DK, Elliston KO, Paress PS, Hamelin M, Arena JP, Schaeffer JM, Van der Ploeg LHT, Cully DF. 1997. Evolutionary relationship of the ligand-gated ion channels and the avermectin-sensitive, glutamate-gated chloride channels. J Mol Evol, 44(5): 501-508.
    Verma P, Kumar D, Tandan S. 2010. Effects of amino acid neurotransmitters on spontaneous muscular activity of the rumen amphistome, Gastrothylax crumenifer. J Helminthol, 83(4): 385-389.
    White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH. 1998. Heterodimerization is required for the formation of a functional GABAB receptor. Nature, 396(6712): 679-682.
    Wilke K, Gaul R, Klauck SM, Poustka A. 1997. A gene in human chromosome band Xq28 (GABRE) defines a putative new subunit class of the GABAA neurotransmitter receptor. Genomics, 45(1): 1-10.
    Xie YF, Tang JS, Jia H. 2003. The roles of different types of glutamate receptors involved in the mediation of nucleus submedius (Sm) glutamate-evoked antinociception in the rat. Brain Res, 988(1-2): 146-153.
    Yano S, Tokumitsu H, Soderling TR. 1998. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature, 396(6711): 584-587.
    Yates DM, Portillo V, Wolstenholme AJ. 2003. The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans. Int J Parasitol, 33(11): 1183-1193.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2094) PDF downloads(2702) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint