Jingyang HU, Yaping ZHANG, Li YU. Summary of Laurasiatheria (Mammalia) Phylogeny. Zoological Research, 2012, 33(E5-6): 65-74. doi: 10.3724/SP.J.1141.2012.E05-06E65
Citation: Jingyang HU, Yaping ZHANG, Li YU. Summary of Laurasiatheria (Mammalia) Phylogeny. Zoological Research, 2012, 33(E5-6): 65-74. doi: 10.3724/SP.J.1141.2012.E05-06E65

Summary of Laurasiatheria (Mammalia) Phylogeny

doi: 10.3724/SP.J.1141.2012.E05-06E65
Funds:  This work was supported by Program for New Century Excellent Talents in University (NCET)
  • Received Date: 2012-09-06
  • Rev Recd Date: 2012-11-15
  • Publish Date: 2012-12-08
  • Laurasiatheria is one of the richest and most diverse superorders of placental mammals. Because this group had a rapid evolutionary radiation, the phylogenetic relationships among the six orders of Laurasiatheria remain a subject of heated debate and several issues related to its phylogeny remain open. Reconstructing the true phylogenetic relationships of Laurasiatheria is a significant case study in evolutionary biology due to the diversity of this suborder and such research will have significant implications for biodiversity conservation. We review the higher-level (inter-ordinal) phylogenies of Laurasiatheria based on previous cytogenetic, morphological and molecular data, and discuss the controversies of its phylogenetic relationship. This review aims to outline future researches on Laurasiatheria phylogeny and adaptive evolution.
  • loading
  • [1]
    Amrine-Madsen H, Koepfli KP, Wayne RK, Spring MS. 2003. A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. Mol Phylogenet Evol, 28(2): 225-240.
    [2]
    Ao L, Mao X, Nie W,Gu X, Feng Q, Wang JH, Su Weiting, Wang YX, Volleth M, Yang FT. 2007. Karyotypic evolution and phylogenetic relationships in the order Chiroptera as revealed by G-banding comparison and chromosome painting. Chromosome Res, 15(3): 257-267.
    [3]
    Arnason U, Janke A. 2002. Mitogenomic analyses of eutherian relationships. Cytogenet Genome Res, 96(1-4): 20-32.
    [4]
    Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A, Nilsson M, Short RV, Xu XF, Janke A. 2002. Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA, 99(12): 8151-8156.
    [5]
    Asher RJ. 2007. A web-database of mammalian morphology and a reanalysis of placental phylogeny. BMC Evol Biol, 7(1): 108-118.
    [6]
    Asher RJ, Helgen KM. 2010. Nomenclature and placental mammal phylogeny. BMC Evol Biol, 10: 102-111.
    [7]
    Asher RJ, Novacek MJ, Geisler JH. 2003. Relationships of endemic African mammals and their fossil relatives based on morphological and molecular evidence. J Mamm Evol, 10(1-2): 131-194.
    [8]
    Bargelloni L, Marcato S, Zane L,Patarnello T. 2000. Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Syst Biol, 49(1): 114-129.
    [9]
    Bashir A, Ye C, Price AL, Bafna V. 2005. Orthologous repeats and mammalian phylogenetic inference. Genome Res, 15(7): 998-1006.
    [10]
    Brito PH, Edwards SV. 2009. Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica, 135(3): 439-455.
    [11]
    Cao Y, Fujiwara M, Nikaido M,Okada N, Hasegawa M. 2000. Interordinal relationships and timescale of eutherian evolution as inferred from mitochondrial genome data. Gene, 259(1-2): 149-158.
    [12]
    Cao Y, Janke A, Waddell PJ,Westerman M,Takenaka O, Murata S, Oksda N, Pääbo S, Hasegawa M. 1998. Conflict among individual mitochondrial proteins in resolving the phylogeny of eutherian orders. J Mol Evol, 47(3): 307-322.
    [13]
    Carter AM. 2001. Evolution of the placenta and fetal membranes seen in the light of molecular phylogenetics. Placenta, 22(10): 800-807.
    [14]
    Delsuc F, Brinkmann H, Philippe H. 2005. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet, 6(5): 361-375.
    [15]
    Dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PCJ, Yang ZH. 2012. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc R Soc B, 279(1742): 3491-3500.
    [16]
    Eizirik E, Murphy WJ, O'Brien SJ. 2001. Molecular dating and biogeography of the early placental mammal radiation. J Hered, 92(2): 212-219.
    [17]
    Frönicke L, Müller-Navia J, Romanakis K, Scherthan H. 1997. Chromosomal homeologies between human, harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype revealed by Zoo-FISH. Chromosoma, 106(2): 108-113.
    [18]
    Giannasi N, Thorpe RS, Malhotra A. 2001. The use of amplified fragment length polymorphism in determining species trees at fine taxonomic levels: analysis of a medically important snake, Trimeresurus albolabris. Mol Ecol, 10(2): 419-426.
    [19]
    Gibson A, Gowri-Shankar V, Higgs PG, Rattray M. 2005. A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Mol Bio Evol, 22(2): 251-264.
    [20]
    Gunnell GF, Simmons NB. 2005. Fossil evidence and the origin of bats. J MammEvol, 12(1-2): 209-246.
    [21]
    Hallström BM, Janke A. 2008. Resolution among major placental mammal interordinal relationships with genome data imply that speciation influenced their earliest radiations. BMC Evol Biol, 8:162-175.
    [22]
    Hallström BM, Janke A. 2010. Mammalian evolution may not be strictly bifurcating. Mol Biol Evol, 27(12): 2804-2816.
    [23]
    Hallström BM, Schneider A, Zoller S, Janke A. 2011. A genomic approach to examine the complex evolution of laurasiatherian mammals. PLoS One, 6(12): e28199.
    [24]
    Hasegawa M, Thorne JL, Kishino H. 2003. Time scale of eutherian evolution estimated without assuming a constant rate of molecular evolution. Genes Genet Syst, 78(4): 267-283.
    [25]
    Hou ZC, Romero R, Wildman DE. 2009. Phylogeny of the Ferungulata (Mammalia: Laurasiatheria) as determined from phylogenomic data. Mol Phylogenet Evol, 52(3): 660-664.
    [26]
    Hudelot C, Gowri-Shankar V, Jow H, Rattray M, Higgs PG. 2003. RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences. Mol Phylogenetics Evol, 28(2): 241-252.
    [27]
    Ji Q, Luo ZX, Yuan CX, Wible JR, Zhang JP, Georgi JA. 2002. The earliest known eutherian mammal. Nature, 416(6883): 816-822.
    [28]
    Johnson KP, Clayton DH. 2000. A molecular phylogeny of the dove genus Zenaida: mitochondrial and nuclear DNA sequences. Condor, 102(4): 864-870.
    [29]
    Jow H, Hudelot C, Rattray M, Higgs PG. 2002. Bayesian phylogenetics using an RNA substitution model applied to early mammalian evolution. Mol Biol Evol, 19(9): 1591-1601.
    [30]
    Kern AD, Kondrashov FA. 2004. Mechanisms and convergence of compensatory evolution in mammalian mitochondrial tRNAs. Nat Genets, 36(11): 1207-1212.
    [31]
    Kitazoe Y, Kishino H, Waddell PJ,Nakajima N, Okabayashi T, Watabe T, Okuhara Y. 2007. Robust time estimation reconciles views of the antiquity of placental mammals. PLoS One, 2(4): e384.
    [32]
    Kjer KM, Honeycutt RL. 2007. Site specific rates of mitochondrial genomes and the phylogeny of eutheria. BMC Evol Biol, 7: 8-17.
    [33]
    Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J. 2006. Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol, 4(4): e91.
    [34]
    Kulemzina AI, Trifonov VA, Perelman PL, Rubtsova NV, Volobuev V, Ferguson-Smith MA, Stanyon R, Yang FT, Graphodatsky AS. 2009. Cross-species chromosome painting in Cetartiodactyla: reconstructing the karyotype evolution in key phylogenetic lineages. Chromosome Res, 17(3): 419-436.
    [35]
    Kulemzina I, Biltueva L, Trifonov VA, Perelman PL, Staroselec YY, Beklemisheva VR, Vorobieva NV, Serdukova NA, Graphodatsky AS. 2010. Comparative cytogenetics of main Laurasiatheria taxa. Russ J Genet, 46(9): 1132-1137.
    [36]
    Kullberg M, Nilsson MA, Arnason U, Harley EH, Janke A. 2006. Housekeeping genes for phylogenetic analysis of eutherian relationships. Mol Biol Evol, 23(8): 1493-1503.
    [37]
    Lin YH, McLenachan PA, Gore AR, Philips MJ, Ota R, Hendy MD, Penny D. 2002. Four new mitochondrial genomes and the increased stability of evolutionary trees of mammals from improved taxon sampling. Mol Biol Evol, 19(12): 2060-2070.
    [38]
    Luo ZX, Yuan CX, Meng QJ, Ji Q. 2011. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature, 476(7361): 442-445.
    [39]
    Madsen O, Willemsen D, Ursing BM, Arnason U, de Jong WW. 2002. Molecular evolution of the mammalian alpha 2B adrenergic receptor. Mol Biol Evol, 19(12): 2150-2160.
    [40]
    Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW, Adkins R, Amrine HM, Stanhope MJ, de Jong WW, Springer MS. 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature, 409(6820): 610-614.
    [41]
    Matthee CA, Eick G, Willows-Munro S, Montgelard C, Pardini AT, Robinson TJ. 2007. Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics. Mol Phylogenet Evol, 42(3): 827-837.
    [42]
    McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfiled RT, Glenn TC. 2012. Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res, 22(10): 746-754.
    [43]
    Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simao TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ. 2011. Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science, 334(6055): 521-524.
    [44]
    Meslin C, Brimau F, Meillour PNL,Callebaut I, Pascal G, Monget P. 2011. The evolutionary history of the SAL1 gene family in eutherian mammals. BMC Evol Biol, 11: 148-162.
    [45]
    Moore WS. 1995. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution, 49(4): 718-726.
    [46]
    Mouchaty SK, Gullberg A, Janke A, Arnason U. 2000. The phylogenetic position of the talpidae within eutheria based on analysis of complete mitochondrial sequences . Mol Biol Evol, 17(1): 60-67.
    [47]
    Murphy WJ, Pevzner PA, O'Brien SJ. 2004. Mammalian phylogenomics comes of age. Trends Genet, 20(12): 631-639.
    [48]
    Murphy WJ, Pringle TH, Crider TA, Springer MS. 2007. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Resh, 17(4): 413-421.
    [49]
    Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O'Brien. 2001a. Molecular phylogenetics and the origins of placental mammals. Nature, 409(6820): 614-618.
    [50]
    Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS. 2001b. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294(5550): 2348-2351.
    [51]
    Nery MF, González DJ, Hoffmann FG, Opazo JC. 2012. Resolution of the laurasiatherian phylogeny: evidence from genomic data. Mol Phylogenetics Evol, 64(3): 685-689.
    [52]
    Nie W, Wang J, Su W, Wang D, Tanomtong A, Perelman PL, Grahodatsky AS, Yang F. 2011. Chromosomal rearrangements and karyotype evolution in carnivores revealed by chromosome painting. Heredity, 108(1): 17-27.
    [53]
    Nikaido M, Kawai K, Harada M, Tomita S, Okada N, Hasegawa M. 2001. Maximum likelihood analysis of the complete mitochondrial genomes of eutherians and a reevaluation of the phylogeny of bats and insectivores. J Mol Evol, 53(4-5):508–516.
    [54]
    Nikolaev S, Montoya-Burgos JI, Margulies EH, NISC Comparative Sequencing Program, Rougemont J, Nyffeler B, Antonarakis SE. 2007. Early history of mammals is elucidated with the ENCODE multiple species sequencing data. PLoS Genet, 3(1): e2.
    [55]
    Nishihara H, Hasegawa M, Okada N. 2006. Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc Natl Acad Sci USA, 103(26): 9929-9934.
    [56]
    Novacek MJ. 1992. Mammalian phylogeny: shaking the tree. Nature, 356(6365): 121-125.
    [57]
    Novacek MJ. 2001. Mammalian phylogeny: genes and supertrees. Curr Biol, 11(14): 573-575.
    [58]
    Page RDM. 2000. Extracting species trees from complex gene trees: reconciled trees and vertebrate phylogeny. Mol Phylogenetics Evol, 14(1): 89-106.
    [59]
    Phillips MJ, Penny D. 2003. The root of the mammalian tree inferred from whole mitochondrial genomes. Mol Biol Evo, 28(2): 171-185.
    [60]
    Prasad AB, Allard MW, Green ED. 2008. Confirming the phylogeny of mammals by use of large comparative sequence data sets. Mol Biol Evol, 25(9): 1795-1808.
    [61]
    Pumo DE, Finamore PS, Franek WR, Phillips CJ, Tarzami S, Balzarano D. 1998. Complete mitochondrial genome of a neotropical fruit bat, Artibeus jamaicensis, and a new hypothesis of the relationships of bats to other eutherian mammals. J Mol Evol, 47(6): 709-717.
    [62]
    Reyes A, Gissi C, Catzeflis F, Nevo E, Pesole G, Saccone C. 2004. Congruent mammalian trees from mitochondrial and nuclear genes using Bayesian methods. Mol Biol Evol, 21(2): 397-403.
    [63]
    Rokas A, Chatzimanolis S. 2008. From gene-scale to genome-scale phylogenetics: the data flood in, but the challenges remain. Methods Mol Biol, 422: 1-12.
    [64]
    Romiguier J, Ranwez V, Douzery EJP, Galtier N. 2010. Contrasting GC-content dynamics across 33 mammalian genomes: relationship with life-history traits and chromosome sizes. Genome Resh, 20(8): 1001-1009.
    [65]
    Sánchez-Gracia A, Castresana J. 2012. Impact of deep coalescence on the reliability of species tree inference from different types of DNA markers in mammals. PLoS One, 7(1): e30239.
    [66]
    Shoshani J, McKenna MC. 1998. Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol Phylogenetics Evol, 3(9): 572-584.
    [67]
    Simmons NB, Geisler JH. 1998. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin AMNH, 235: 1-182.
    [68]
    Simpson GG. 1945. The principles of classification and a classification of mammals. Bull Amer Mus Nat Hist, 85: 1-350.
    [69]
    Song S, Liu L, Edwards SV, Wu SY. 2012. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci USA, 109(37): 14942-14947.
    [70]
    Sotero-Caio CG, Pieczarka JC, Nagamachi CY, Gomes AJB, Lira TC, O'Brien PCM, Ferguson-Smith MA, Souza MJ, Santos N. 2011. Chromosomal homologies among vampire bats revealed by chromosome painting (Phyllostomidae, Chiroptera). Cytogenet Genome Res, 132(3): 156-164.
    [71]
    Springer MS, Murphy WJ. 2007. Mammalian evolution and biomedicine: new views from phylogeny. Biol Rev Camb Philos Soc, 82(3): 375-392.
    [72]
    Springer MS, Amrine HM, Burk A, Stanhope MJ. 1999. Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition. Syst Biol, 48(1): 65-75.
    [73]
    Springer MS, Stanhope MJ, Madsen O, de Jong WW. 2004. Molecules consolidate the placental mammal tree. Trends Ecol Evol, 19(8): 430-438.
    [74]
    Springer MS, Meredith RW, Janecka JE, Murphy WJ. 2011. The historical biogeography of Mammalia. Philos Trans R Soc Lond B Biol Sci, 366(1577): 2478-2502.
    [75]
    Springer MS, Burk-Herrick A, Meredith R, Eizirik E, Teeling E, O'Brien SJ, Murphy WJ. 2007. The adequacy of morphology for reconstructing the early history of placental mammals. Syst Biol, 56(4): 673-684.
    [76]
    Springer MS, DeBry RW, Douady C, Amrine HM, Madsen O, de Jong WW, Stanhope MJ. 2001. Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction. Mol Bio Evol, 18(2): 132-143.
    [77]
    Sturmbauer C, Meyer A. 1993. Mitochondrial phylogeny of the endemic mouthbrooding lineages of cichlid fishes from Lake Tanganyika in eastern Africa. Mol Biol Evol, 10(4): 751-768.
    [78]
    Trifonov VA, Stanyon R, Nesterenko AI, Fu BY, Perelman PL, O'Brien PCM, Stone G, Rubtsova NV, Houck ML, Robinson TJ, Ferguson-Smith MA, Dobigny G, Graphodatsky AS, Yang FT. 2008. Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res, 16(1): 89-107.
    [79]
    Waddell PJ, Shelley S. 2003. Evaluating placental inter-ordinal phylogenies with novel sequences including RAG1, γ-fibrinogen, ND6, and mt-tRNA, plus MCMC-driven nucleotide, amino acid, and codon models. Mol Phylogenet Evol, 28(2): 197-224.
    [80]
    Waddell PJ, Okada N, Hasegawa M. 1999a. Towards resolving the interordinal relationships of placental mammals. Syst Biol, 48(1): 1-5.
    [81]
    Waddell PJ, Kishino H, Ota R. 2001. A phylogenetic foundation for comparative mammalian genomics. Genome Inform, 12: 141-154.
    [82]
    Waddell PJ, Cao Y, Hauf J, Hasegawa M. 1999b. Using novel phylogenetic methods to evaluate mammalian mtDNA, including amino acid-invariant sites-LogDet plus site stripping, to detect internal conflicts in the data, with special reference to the positions of hedgehog, armadillo, and elephant. Syst Biol, 48(1): 31-53.
    [83]
    Wible JR, Rougier GW, Novacek MJ, Asher RJ. 2007. Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature, 447(7147): 1003-1006.
    [84]
    Wible JR, Rougier GW, Novacek MJ, Asher RJ. 2009. The eutherian mammal Maelestesgobiensis from the Late Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria. Bio One, 327: 1-123.
    [85]
    Wildman DE, Chen CY, Erez O, Grossman LI, Goodman M, Romero R. 2006. Evolution of the mammalian placenta revealed by phylogenetic analysis. Proc Natl Acad Sci USA, 103(9): 3203-3208.
    [86]
    Wilson DE, Reeder DM. 2005. Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd ed. Baltimore: Jonhs Hopkuns University Press.
    [87]
    Wu YC, Rasmussen MD, Kellis M. 2012. Evolution at the subgene level: domain rearrangements in the drosophila phylogeny. Mol Bio Evol, 29(2): 689-705.
    [88]
    Yang FT, Graphodatsky AS. 2004. Integrated comparative genome maps and their implications for karyotype evolution of carnivores. Chromosomes Today, 14: 215-244.
    [89]
    Yang FT, Graphodatsky AS, Li TL,Fu BY, Dobigny G, Wang JH, Perelman PL, Serdukova NA, Su WT, O'Brien PCM, Wang YX, Ferguson-Smith MA, Volobouev V, Nie WH. 2006. Comparative genome maps of the pangolin, hedgehog, sloth, anteater and human revealed by cross-species chromosome painting: further insight into the ancestral karyotype and genome evolution of eutherian mammals. Chromosome Resh, 14(3): 283-296.
    [90]
    Ye JP, Biltueva L, Huang L, Nie WH, Wang JH, Jing MD, Su WT, Volobouev V, Jiang XL, Graphodatsky AS, Yang FT. 2006. Cross-species chromosome painting unveils cytogenetic signatures for the Eulipotyphla and evidence for the polyphyly of Insectivora. Chromosome Res, 14(2): 151-159.
    [91]
    Yu L, Zhang YP. 2006a. Phylogenomics-An attractive avenue to reconstruct "Tree of Life". Genitics, 28(11): 1445-1450. (in Chinese)
    [92]
    Yu L, Zhang YP. 2006b. Summary of phylogeny in mammalian order carnivora. Zool Res, 27(6): 657-665. (in Chinese)
    [93]
    Yu L, Li YW, Ryder OA, Zhang YP. 2004. Phylogeny of the bears (Ursidae) based on nuclear and mitochondrial genes. Mol Phylogenet Evol, 32(2): 480-494.
    [94]
    Yu L, Li YW, Ryder OA, Zhang YP. 2007. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. BMC Evol Biol, 7: 198-209.
    [95]
    Yu L, Luan PT, Jin W, Ryder OA, Chemnick LG, Davis HA, Zhang YP. 2011. Phylogenetic utility of nuclear introns in interfamilial relationships of Caniformia (order Carnivora). Syst Biol, 60(2): 175-187.
    [96]
    Zhou XM, Yang G. 2010. A review on the progress in mammalian phylogenomics. Acta Theriol Sin, 30(3): 339-345. (in Chinese)
    [97]
    Zhou XM, Xu SX, Zhang P, Yang G. 2011a. Developing a series of conservative anchor markers and their application to phylogenomics of Laurasiatherian mammals. Mol Ecol Resour, 11(1): 134-140.
    [98]
    Zhou XM, Xu SX, Xu JX, Chen BY, Zhou KY, Yang G. 2011b. Phylogenomic analysis resolves the interordinal relationships and rapid diversification of the laurasiatherian mammals. Syst Biol, 61(1): 150-164.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1489) PDF downloads(2174) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return