Volume 33 Issue 1
Jan.  2012
Turn off MathJax
Article Contents
CAO Guang, LIU Feng-Liang, ZHANG Gao-Hong, ZHENG Yong-Tang. The primate TRIMCyp fusion genes and mechanism of restricting retroviruses replication. Zoological Research, 2012, 33(1): 99-107. doi: 10.3724/SP.J.1141.2012.01099
Citation: CAO Guang, LIU Feng-Liang, ZHANG Gao-Hong, ZHENG Yong-Tang. The primate TRIMCyp fusion genes and mechanism of restricting retroviruses replication. Zoological Research, 2012, 33(1): 99-107. doi: 10.3724/SP.J.1141.2012.01099

The primate TRIMCyp fusion genes and mechanism of restricting retroviruses replication

doi: 10.3724/SP.J.1141.2012.01099
  • Received Date: 2011-10-28
  • Rev Recd Date: 2011-12-29
  • Publish Date: 2012-02-22
  • TRIM5-cyclophilin A (TRIMCyp) fusion gene is an unusual TRIM5 locus. At present, this fusion phenomenon has been found in the representative species which contain owl monkey (Aotus trivirgatus) of Aotus genus that belongs to New World monkeys and Old World monkeys such as Northern pig-tailed macaque (M. leonina), Sunda pig-tailed macaque(M. nemestrina), Crab-eating macaque (M. fascicularis), Indian rhesus macaque (M. mulatta) and Assam macaque (M. assamensis), etc. But the fusion mode and transcription splicing pattern of TRIMCyp fusion gene are different between New World and Old World monkeys. The TRIMCyp fusion gene of New World monkeys is formed by inserting a CypA pseudogene cDNA sequence into the region between exon 7 and exon 8 of the TRIM5 locus through retrotransposition. However the TRIMCyp fusion gene of Old World monkeys results from the retrotransposition of a CypA pseudogene cDNA into 3' terminal or 3'-UTR of TRIM5 gene. The distributions, genotypes, expression and restricting activities against different retroviruses of TRIMCyp were different across species of primates. Moreover, most of the researches focused on the TRIMCyp fusion gene of owl monkey and pig-tailed macaque and found that they may play very important roles in restricting HIV-1 replication and determine the susceptibility to HIV-1 infection. It was reported that the TRIMCyp protein of owl monkey could inhibit HIV-1 infection in a similar way as TRIM5α, but TRIMCyp protein of pig-tailed monkey loss the restricting activity to HIV-1 infection. Here we reviewed the distributions, genotypes and restriction mechanism for inhibiting retroviruses replication of TRIMCyp fusion gene in primates.
  • loading
  • [1]
    Aiken C, Joyce S. 2011. Immunology: TRIM5 does double duty
    [J]. Nature, 472(7343): 305-306.
    Anderson JL, Campbell EM, Wu XL, Vandegraaff N, Engelman A, Hope TJ. 2006. Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins
    [J]. J Virol, 80(19): 9754-9760.
    Bieniasz PD. 2004. Intrinsic immunity: a front-line defense against viral attack
    [J]. Nat Immunol, 5(11): 1109-1115.
    Brennan G, Kozyrev Y, Kodama T, Hu SL. 2007. Novel TRIM5 isoforms expressed by Macaca nemestrina
    [J]. J Virol, 81(22): 12210-12217.
    Brennan G, Kozyrev Y, Hu SL. 2008. TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis
    [J]. Proc Natl Acad Sci USA, 105(9): 3569-3574.
    Cao G, Nie WH, Liu FL, Kuang YQ, Wang JH, Su WT, Zheng YT. 2011. Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis
    [J]. Zool Res, 32(1): 40-49.
    [曹 光, 佴文惠, 刘丰 亮, 况轶群, 王金焕, 苏伟婷, 郑永唐. 2011. 熊猴存在TRIM5/ TRIMCyp 杂合子基因型. 动物学研究, 32(1): 40-49.]
    Chatterji U, Bobardt MD, Stanfield R, Ptak R G, Pallansch LA, Ward PA, Jones MJ, Stoddart CA, Scalfaro P, Dumont JM, Besseghir K, Rosenwirth B, Gallay PA. 2005. Naturally occurring capsid substitutions render HIV-1 cyclophilin A independent in human cells and TRIM-cyclophilin-resistant in Owl monkey cells
    [J]. J Biol Chem, 280(48): 40293-40300.
    Diaz-Griffero F, Vandegraaff N, Li Y, McGee-Estrada K, Stremlau M, Welikala S, Si ZH, Engelman A, Sodroski J. 2006. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1
    [J]. Virology, 351(2): 404-419.
    Diaz-Griffero F, Kar A, Perron M, Xiang SH, Javanbakht H, Li X, Sodroski J. 2007. Modulation of retroviral restriction and proteasome inhibitorresistant turnover by changes in the TRIM5α B-box 2 domain
    [J]. J Virol, 81(19): 10362-10378.
    Diaz-Griffero F, Qin XR, Hayashi F, Kigawa T, Finzi A, Sarnak Z, Lienlaf M, Yokoyama S, Sodroski J. 2009. A B-box 2 surface patch important for TRIM5α self-association, capsid binding avidity, and retrovirus restriction
    [J]. J Virol, 83(20): 10737-10751.
    Dietrich EA, Brennan G, Ferguson B, Wiseman RW, O'Connor D, Hu SL. 2011. Variable prevalence and functional diversity of the antiretroviral restriction factor TRIMCyp in Macaca fascicularis
    [J]. J Virol, 85(19): 9956-9963.
    Dietrich EA, Jones-Engel L, Hu SL. 2010. Evolution of the antiretroviral restriction factor TRIMCyp in Old World primates
    [J]. PLoS One, 5(11): e14019.
    Franke EK, Yuan HE, Luban J. 1994. Specific incorporation of cyclophilin A into HIV-1 virions
    [J]. Nature, 372(6504): 359-362.
    Gilbert PB, McKeague IW, Eisen G, Mullins C, Guéye-NDiaye A, Mboup S, Kanki PJ. 2003. Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort study in Senegal
    [J]. Stat Med, 22(4): 573-593.
    Gippoliti S. 2001.Notes on the taxonomy of Macaca nemestrina leonina blyth, 1863 (Primates: Cercopithecidae)
    [J]. Hystrix It J Mamm, 12(1): 51-54.
    Goff SP. 2004. Retrovirus restriction factors
    [J]. Mol Cell, 16(6): 849-859.
    Groves CP. 2001. Primate Taxonomy
    [M]. Washington, DC, USA: Smithsonian Institution Press, 222-224.
    Hatziioannou T, Perez-Caballero D, Cowan S, Bieniasz PD. 2005. Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells
    [J]. J Virol, 79(1): 176-183.
    Hofmann W, Schubert D, LaBonte J, Munson L, Gibson S, Scammell J, Ferrigno P, Sodroski J. 1999. Species-specific, postentry barriers to primate immunodeficiency virus infection
    [J]. J Virol, 73(12): 10020-10028.
    Javanbakht H, Diaz-Griffero F, Yuan W, Yeung DF, Li X, Song B, Sodroski J. 2007. The ability of multimerized cyclophilin A to restrict retrovirus infection
    [J]. Virology, 367(1): 19-29.
    Kuang YQ, Tang X, Liu FL, Jiang XL, Zhang YP, Gao GX, Zheng YT. 2009. Genotyping of TRIM5 locus in northern pig-tailed macaques (Macaca leonina), a primate species susceptible to human immunodeficiency virus type 1 infection
    [J]. Retrovirology, 6: 58.
    Li QQ, Zhang YP. 2005. Phylogenetic relationships of the macaques (Cercopithecidae: Macaca), inferred from mitochondrial DNA sequences
    [J]. Biochem Genet, 43(7-8): 375-386.
    Liao CH, Kuang YQ, Liu HL, Zheng YT, Su B. 2007. A novel fusion gene, TRIM5-Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection
    [J]. AIDS, 21(Suppl 8): S19-S26.
    Lilly F. 1967. Susceptibility to two strains of Friend leukemia virus in mice
    [J]. Science, 155(3761): 461-462.
    Lin TY, Emerman M. 2006. Cyclophilin A interacts with diverse lentiviral capsids
    [J]. Retrovirology, 3: 70.
    Luban J. 2007. Cyclophilin A, TRIM5, and resistance to human immunodeficiency virus type 1 infection
    [J]. J Virol, 81(3): 1054-1061.
    Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP. 1993. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B
    [J]. Cell, 73(6): 1067-1078.
    Nepveu-Traversy ME, Bérubé J, Berthoux L. 2009. TRIM5alpha and TRIMCyp form apparent hexamers and their multimeric state is not affected by exposure to restriction-sensitive viruses or by treatment with pharmacological inhibitors
    [J]. Retrovirology, 6: 100.
    Newman RM, Hall L, Kirmaier A, Pozzi LA, Pery E, Farzan M, O'Neil SP, Johnson W. 2008. Evolution of a TRIM5-CypA splice isoform in old world monkeys
    [J]. PLoS Pathog, 4(2): e1000003.
    Nisole S, Lynch C, Stoye JP, Yap MW. 2004. A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1
    [J]. Proc Natl Acad Sci USA, 101(36): 13324-13328.
    Perez-Caballero D, Hatziioannou T, Zhang FW, Cowan S, Bieniasz PD. 2005. Restriction of human immunodeficiency virus type 1 by TRIM-CypA occurs with rapid kinetics and independently of cytoplasmic bodies, ubiquitin, and proteasome activity
    [J]. J Virol, 79(24): 15567-15572.
    Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, Reinhard C, Santoni FA, Uchil P D, Chatel L, Bisiaux A, Albert ML, Strambio-De-Castillia C, Mothes W, Pizzato M, Grutter MG, Luban J. 2011. TRIM5 is an innate immune sensor for the retrovirus capsid lattice
    [J]. Nature, 472(7343): 361-365.
    Price AJ, Marzetta F, Lammers M, Ylinen LM, Schaller T, Wilson S J, Towers GJ, James LC. 2009. Active site remodeling switches HIV specificity of antiretroviral TRIMCyp
    [J]. Nat Struct Mol Biol, 16(10): 1036-1042.
    Reeves JD, Doms RW. 2002. Human immunodeficiency virus type 2
    [J]. J Gen Virol, 83(6): 1253-1265.
    Ribeiro IP, Menezes AN, Moreira MA, Bonvicino CR, Seuanez HN, Soares MA. 2005. Evolution of cyclophilin A and TRIMCyp retrotransposition in New World primates
    [J]. J Virol, 79(23): 14998-15003.
    Rosenblum LL, Supriatna J, Melnick DJ. 1997. Phylogeographic analysis of pig-tail macaque populations (Macaca nemestrina) inferred from mitochondrial DNA
    [J]. Am J Phys Anthropol, 104(1): 35-45.
    Sastri J, Campbell EM. 2011. Recent insights into the mechanism and consequences of TRIM5α retroviral restriction
    [J]. AIDS Res Hum Retroviruses, 27(3): 231-238.
    Sawyer SL, Wu LI, Emerman M, Malik HS. 2005. Positive selection of primate TRIM5α identifies a critical species-specific retroviral restriction domain
    [J]. Proc Natl Acad Sci USA, 102(8): 2832-2837.
    Sayah DM, Sokolskaja E, Berthoux L, Luban J. 2004. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1
    [J]. Nature, 430(6999): 569-573.
    Schaller T, Hué S, Towers GJ. 2007. An active TRIM5 protein in rabbits indicates a common antiviral ancestor for mammalian TRIM5 proteins
    [J]. J Virol, 81(21): 11713-11721.
    Si ZH, Vandegraaff N, O'Huigin C, Song B, Yuan W, Xu C, Perron M, Li X, Marasco WA, Engelman A, Dean M, Sodroski J. 2006. Evolution of a cytoplasmic tripartite motif (TRIM) protein in cows that restricts retroviral infection
    [J]. Proc Natl Acad Sci USA, 103(19): 7454-7459.
    Song B, Gold B, O'Huigin C, Javanbakht H, Li X, Stremlau M, Winkler C, Dean M, Sodroski J. 2005. The B30.2 (SPRY) domain of the retroviral restriction factor TRIM5α exhibits lineage-specific length and sequence variation in primates
    [J]. J Virol, 79(10): 6111-6121.
    Steeves R, Lilly F. 1977. Interactions between host and viral genomes in mouse leukemia
    [J]. Annu Rev Genet, 11(1): 277-296.
    Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. 2004. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys
    [J]. Nature, 427(6977): 848-853.
    Tang X, Kuang YQ, Zheng YT. 2009. Research advance of TRIM5α on structure and restriction mechanism to HIV-1 replication
    [J]. Chin J Virol, 25(2): 148-153.
    [汤霞, 况轶群, 郑永唐. 2009. TRIM5α 分子结 构和限制 HIV-1 复制机制的研究进展. 病毒学报, 25(2): 148-153.]
    Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, Gottlinger HG. 1994. Functional association of cyclophilin A with HIV-1 virions
    [J]. Nature, 372(6504): 363-365.
    Towers GJ. 2007. The control of viral infection by tripartite motif proteins and cyclophilin A
    [J]. Retrovirology, 4: 40.
    Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD. 2003. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors
    [J]. Nat Med, 9(9): 1138-1143.
    Virgen CA, Kratovac Z, Bieniasz PD, Hatziioannou T. 2008. Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species
    [J]. Proc Natl Acad Sci USA, 105(9): 3563-3568.
    Wilson SJ, Webb BL, Ylinen LM, Verschoor E, Heeney JL, Towers GJ. 2008. Independent evolution of an antiviral TRIMCyp in rhesus macaques
    [J]. Proc Natl Acad Sci USA, 105(9): 3557-3562.
    Yap MW, Dodding MP, Stoye JP. 2006. Trim-cyclophilin A fusion proteins can restrict human immunodeficiency virus type 1 infection at two distinct phases in the viral life cycle
    [J]. J Virol, 80(8): 4061-4067.
    Ylinen LMJ, Keckesova Z, Webb BL, Gifford RJ, Smith TP, Towers GJ. 2006. Isolation of an active Lv1 gene from cattle indicates that tripartite motif protein-mediated innate immunity to retroviral infection is widespread among mammals
    [J]. J Virol, 80(15): 7332-7338.
    Ylinen LMJ, Price AJ, Rasaiyaah J, Hue S, Rose NJ, Marzetta F, James LC, Towers GJ. 2010. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity
    [J]. PLoS Pathog, 6(8): e1001062.
    Zhang FW, Hatziioannou T, Perez-Caballero D, Derse D, Bieniasz PD. 2006. Antiretroviral potential of human tripartite motif-5 and related proteins
    [J]. Virology, 353(2): 396-409.
  • Relative Articles

    [1] Tian-Zhang Song, Ming-Xu Zhang, Yu-Jie Xia, Yu Xiao, Wei Pang, Yong-Tang Zheng. Parasites may exit immunocompromised northern pig-tailed macaques (Macaca leonina) infected with SIVmac239. Zoological Research, 2018, 39(1): 42-51.  doi: 10.24272/j.issn.2095-8137.2018.015
    [2] Gary Wong, Xiang-Guo Qiu. Type I interferon receptor knockout mice as models for infection of highly pathogenic viruses with outbreak potential. Zoological Research, 2018, 39(1): 3-14.  doi: 10.24272/j.issn.2095-8137.2017.052
    [3] Wei-Na Guo, Bin Zhu, Ling Ai, Dong-Liang Yang, Bao-Ju Wang.  Animal models for the study of hepatitis B virus infection. Zoological Research, 2018, 39(1): 25-31.  doi: 10.24272/j.issn.2095-8137.2018.013
    [4] Gary Wong, Wen-Guang Cao, Shi-Hua He, Zi-Rui Zhang, Wen-Jun Zhu, Estella Moffat, Hideki Ebihara, Carissa Embury-Hyatt, Xiang-Guo Qiu. Development and characterization of a guinea pig model for Marburg virus. Zoological Research, 2018, 39(1): 32-41.  doi: 10.24272/j.issn.2095-8137.2017.054
    [5] Yong-Gang Yao. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 2017, 38(3): 118-126.  doi: 10.24272/j.issn.2095-8137.2017.032
    [6] Ji Xiao, Rong Liu, Ce-Shi Chen. Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model. Zoological Research, 2017, 38(3): 127-137.  doi: 10.24272/j.issn.2095-8137.2017.033
    [7] Ming GUO, Wen-Zhe HO. Animal models to study Mycobacterium tuberculosis and HIV co-infection. Zoological Research, 2014, 35(3): 163-169.  doi: 10.11813/j.issn.0254-5853.2014.3.163
    [8] Ai-Hua LEI, Wei PANG, Gao-Hong ZHANG, Yong-Tang ZHENG. Use and research of pigtailed macaques in nonhuman primate HIV/AIDS models. Zoological Research, 2013, 34(2): 77-88.  doi: 10.3724/SP.J.1141.2013.02077
    [9] WANG Wen-Guang, HUANG Xiao-Yan, XU Juan, SUN Xiao-Mei, DAI Jie-Jie, LI Qi-Han. Experimental studies on infant Tupaia belangeri chineses with EV71 infection. Zoological Research, 2012, 33(1): 7-13.  doi: 10.3724/SP.J.1141.2012.01007
    [10] GUO Li-Yun, WEI Jing-Kuan, YANG Shang-Chuan, WANG Zheng-Bo. Glaucoma model for stem cell transplantation research in New Zealand white rabbits. Zoological Research, 2012, (2): 225-230.  doi: 10.3724/SP.J.1141.2012.02225
    [11] ZHU Hui-Fang, ZHANG Yuan-Xu, ZHAO Xu-Dong. Animal models of human glioma: the progress of application and investigation. Zoological Research, 2012, 33(3): 337-342.  doi: 10.3724/SP.J.1141.2012.03337
    [12] LI Yao, DAI Jie-Jie, SUN Xiao-Mei, XIA Xue-Shan. Progress in studies on HCV receptor of Tupaia as a potential hepatitis C animal model. Zoological Research, 2011, 32(1): 97-103.  doi: 10.3724/SP.J.1141.2011.01097
    [13] CAO Guang, NIE Wen-Hui, LIU Feng-Liang, KUANG Yi-Qun, WANG Jin-Huan, SU Wei-Ting, ZH Y. Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis. Zoological Research, 2011, 32(1): 40-49.  doi: 10.3724/SP.J.1141.2011.01040
    [14] XIA Hou-JUN, ZHANG Gao-Hong, ZHENG Yong-Tang. Roles of Dendritic Cell in Disease Progression of AIDS Primate Models. Zoological Research, 2010, 31(1): 57-65.  doi: 10.3724/SP.J.1141.2010.01057
    [15] ZHU Lin, ZHANG Gao-Hong, ZHENG Yong-Tang. Application Studies of Animal Models in Evaluating Safety and Efficacy of HIV-1 Microbicides. Zoological Research, 2010, 31(1): 66-76.  doi: 10.3724/SP.J.1141.2010.01066
    [16] HANG Gao-hong, LI Ming-hua, ZHENG Yong-tang. Application of AIDS Macaque Animal Model in HIV Vaccine Research. Zoological Research, 2007, 28(5): 556-562.
    [17] ZHANG Gao-hong, CHEN Ya-li, TANG Hong, ZHENG Yong-tang. Humanized SCID Mouse:A Small Animal Model for HIV Research. Zoological Research, 2004, 25(4): 356-362.
    [18] WANG Jian-hua, WANG Yuan-yuan, OUYANG Dong-yun, ZHENG Yong-tang. Apoptosis in Human Immunodeficiency Virus Infection. Zoological Research, 2002, 23(6): 514-520.
    [19] GUO Ren, CHEN Shu-fan, LUO Qi-sheng, WANG Qing-ling, YI Hong-kun, ZHAN Qiong-fen. Transgenic Mice as A Model For Neurovirulence Test of Live Poliomyelitis Vaccines. Zoological Research, 1999, 20(4): 241-246.
    [20] HUANG Hai, BEN Kun-long, ZHENG Yong-tang. Current Status in Research on Animal Models For human Aquired Immunodeficiency Syndrome. Zoological Research, 1997, 18(1): 121-128.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1797) PDF downloads(2045) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint