Volume 33 Issue 1
Jan.  2012
Turn off MathJax
Article Contents
LI Sheng-An, LEE Wen-Hui, ZHANG Yun. Two bacterial infection models in tree shrew for evaluating the efficacy of antimicrobial agents. Zoological Research, 2012, 33(1): 1-6. doi: 10.3724/SP.J.1141.2012.01001
Citation: LI Sheng-An, LEE Wen-Hui, ZHANG Yun. Two bacterial infection models in tree shrew for evaluating the efficacy of antimicrobial agents. Zoological Research, 2012, 33(1): 1-6. doi: 10.3724/SP.J.1141.2012.01001

Two bacterial infection models in tree shrew for evaluating the efficacy of antimicrobial agents

doi: 10.3724/SP.J.1141.2012.01001
Funds:  This study was financially supported by the Project from the Chinese Academy of Sciences (KSCX2-EW-R-11), the Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province (KSCX2-EW-J-23), and Science and Technology Department of Yunnan Province (2011C1139)
  • Received Date: 2011-10-17
  • Rev Recd Date: 2012-01-10
  • Publish Date: 2012-02-22
  • Animal models are essential for the development of new anti-infectious drugs. Although some bacterial infection models have been established in rodents, small primate models are rare. Here, we report on two bacterial infection models established in tree shrew (Tupaia belangeri chinensis). A burnt skin infection model was induced by dropping 5×106 CFU of Staphylococcus aureus on the surface of a wound after a third degree burn. This dose of S. aureus caused persistent infection for 7 days and obvious inflammatory response was observed 4 days after inoculation. A Dacron graft infection model, 2×106 CFU of Pseudomonas aeruginosa also caused persistent infection for 6 days, with large amounts of pus observed 3 days after inoculation. These models were used to evaluate the efficacy of levofloxacin (LEV) and cefoperazone (CPZ), which reduced the viable bacteria in skin to 4log10 and 5log10 CFU/100 mg tissue, respectively. The number of bacteria in graft was significantly reduced by 4log10 CFU/mL treatment compared to the untreated group (P<0.05). These results suggest that two bacterial infection models were successfully established in tree shrew using P. aeruginosa and S. aureus. In addition, tree shrew was susceptible to P. aeruginosa and S. aureus, thus making it an ideal bacterial infection animal model for the evaluation of new antimicrobials.
  • loading
  • [1]
    Cao J, Yang EB, Su JJ, Li Y, Chow P. 2003. The tree shrews: adjuncts and alternatives to primates as models for biomedical research
    [J]. J Med Primatol, 32(3): 123-130.
    Craig W. 1993. Relevance of animal models for clinical treatment
    [J]. Eur J Clin Microbiol Infect Dis, 12(Suppl 1): S55-S57.
    Dale RMK, Schnell G, Wong JP. 2004. Therapeutic efficacy of "nubiotics" against burn wound infection by Pseudomonas aeruginosa
    [J]. Antimicrob Agents Chemother, 48(8): 2918-2923.
    Druilhe P, Hagan P, Rook GAW. 2002. The importance of models of infection in the study of disease resistance
    [J]. Trends Microbiol, 10(10): S38-S46.
    Fischbach MA, Walsh CT. 2009. Antibiotics for emerging pathogens
    [J]. Science, 325(5944): 1089-1093.
    Giacometti A, Cirioni O, Gov Y, Ghiselli R, Del Prete MS, Mocchegiani F, Saba V, Orlando F, Scalise G, Balaban N, Dell'Acqua G. 2003. RNA III inhibiting peptide inhibits in vivo biofilm formation by drug-resistant Staphylococcus aureus
    [J]. Antimicrob Agents Chemother, 47(6): 1979-1983.
    Givskov M, Hentzer M. 2003. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections
    [J]. J Clin Invest, 112(9): 1300-1307.
    McCormick C, Caballero A, Tang AH, Balzli C, Song J, O'Callaghan R. 2008. Effectiveness of a new tobramycin (0.3%) and dexamethasone (0.05%) formulation in the treatment of experimental Pseudomonas keratitis
    [J]. Curr Med Res Opin, 24(6): 1569-1575.
    McPhee JB, Hancock REW. 2005. Function and therapeutic potential of host defence peptides
    [J]. J Pept Sci, 11(11): 677-687.
    Muller S, Stanyon R, O'Brien PC, Ferguson-Smith MA, Plesker R, Wienberg J. 1999. Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans
    [J]. Chromosoma, 108(6): 393-400.
    Niewiesk S, Prince G. 2002. Diversifying animal models: the use of hispid cotton rats (Sigmodon hispidus) in infectious diseases
    [J]. Lab Anim, 36(4): 357-372.
    Oyston PCF, Fox MA, Richards SJ, Clark GC. 2009. Novel peptide therapeutics for treatment of infections
    [J]. J Med Microbiol, 58(8): 977-987.
    Rafla K, Tredget EE. 2011. Infection control in the burn unit
    [J]. Burns, 37(1): 5-15.
    Retsema JA, Bergeron JM, Girard D, Milisen WB, Girard AE. 1993. Preferential concentration of azithromycin in an infected mouse thigh model
    [J]. J Antimicrob Chemother, 31(Suppl E): 5-16.
    Russo TA, Beanan JM, Olson R, MacDonald U, Luke NR, Gill SR, Campagnari AA. 2008. Rat pneumonia and soft-tissue infection models for the study of Acinetobacter baumannii biology
    [J]. Infect Immun, 76(8): 3577-3586.
    Tredget EE, Shankowsky HA, Rennie R, Burrell RE, Logsetty S. 2004. Pseudomonas infections in the thermally injured patient
    [J]. Burns, 30(1): 3-26.
    Turgut H, Sacar S, Kaleli I, Sacar M, Goksin I, Toprak S, Asan A, Cevahir N, Tekin K, Baltalarli A. 2005. Systemic and local antibiotic prophylaxis in the prevention of Staphylococcus epidermidis graft infection
    [J]. BMC Infect Dis, 5: 91.
    Wada T, Kida T, Inoue T, Tokushige H, Naka H, Sakaki H. 2008. Immunomodulatory effect of gatifloxacin on mouse peritoneal macrophages in vitro and in models of endotoxin-induced rat conjunctivitis and rabbit bacterial keratitis
    [J]. Ophthalmic Res, 40(2): 54-60.
    Yang EB, Cao J, Su JJ, Li Y, Chow P. 2003. The tree shrews: adjuncts and alternatives to primates as models for biomedical research
    [J]. J Med Primatol, 32(3): 123-130.
    Zasloff M. 2002. Antimicrobial peptides of multicellular organisms
    [J]. Nature, 415(6870): 389-395.
    Zhang Y, Zhao H, Yu GY, Liu XD, Shen JH, Lee WH, Zhang Y. 2010. Structure-function relationship of king cobra cathelicidin
    [J]. Peptides, 31(8): 1488-1493.
    Zhao XP, Tang ZY, Klumpp B, Wolff-Vorbeck G, Barth H, Levy S, von Weizsäcker F, Blum HE, Baumert TF. 2002. Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection
    [J]. J Clin Invest, 109(2): 221-232.
  • Relative Articles

    [1] Shu Wei, Hai-Rong Hua, Qian-Quan Chen, Ying Zhang, Fei Chen, Shu-Qing Li, Fan Li, Jia-Li Li. Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging. Zoological Research, 2017, 38(2): 96-102.  doi: 10.24272/j.issn.2095-8137.2017.013
    [2] Gui LI, Ren LAI, Gang DUAN, Long-Bao LYU, Zhi-Ye ZHANG, Huang LIU, Xun XIANG. Isolation and identification of symbiotic bacteria from the skin, mouth, and rectum of wild and captive tree shrews. Zoological Research, 2014, 35(6): 492-499.  doi: 10.13918/j.issn.2095-8137.2014.6.492
    [3] Jian-Ping LI, Yun LIAO, Ying ZHANG, Jing-Jing WANG, Li-Chun WANG, Kai FENG, Qi-Han LI, Long-Ding LIU. Experimental infection of tree shrews(Tupaia belangeri) with Coxsackie virus A16. Zoological Research, 2014, 35(6): 485-491.  doi: 10.13918/j.issn.2095-8137.2014.6.485
    [4] Ling XU, Yu FAN, Xue-Long JIANG, Yong-Gang YAO. Molecular evidence on the phylogenetic position of tree shrews. Zoological Research, 2013, 34(2): 70-76.  doi: 10.3724/SP.J.1141.2013.02070
    [5] Xiao-Yun WU, Yun-Hai LI, Qing CHANG, Lin-Qiang ZHANG, Sha-Sha LIAO, Bin LIANG. Streptozotocin induction of type 2 diabetes in tree shrew. Zoological Research, 2013, 34(2): 108-115.  doi: 10.3724/SP.J.1141.2013.02108
    [6] ZHANG Yuan-Xu, PING Shu-Huang, YANG Shi-Hua. Morphological characteristics and cryodamage of Chinese tree shrew (Tupaia belangeri chinensis) sperm. Zoological Research, 2012, 33(1): 29-36.  doi: 10.3724/SP.J.1141.2012.01029
    [7] SUN Yong-Mei, YANG Jian-Zhen, SUN Hua-Ying, MA Yuan-Ye, WANG Jian-Hong. Establishment of tree shrew chronic morphine dependent model. Zoological Research, 2012, 33(1): 14-18.  doi: 10.3724/SP.J.1141.2012.01014
    [8] WANG Jing, ZHOU Qi-Xin, TIAN Men, YANG Yue-Xiong, XU Lin. Tree shrew models: A chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory. Zoological Research, 2011, 32(1): 24-30.  doi: 10.3724/SP.J.1141.2011.01024
    [9] HAN Jian-Bao, ZHANG Gao-Hong, DUAN Yong, MA Jian-Ping, ZHANG Xi-He, LUO Rong-Hua, Lü. Sero-epidemiology of six viruses natural infection in Tupaia belangeri chinensis. Zoological Research, 2011, 32(1): 11-16.  doi: 10.3724/SP.J.1141.2011.01011
    [10] MA Xu-Tong, LI Fu-Lin, JIANG Hong-Jun, LI Wen-Hui, ZHANG Yun, DU Ting-Yi. Detection and comparison of physiological indexes in the wild and laboratory tree shrew. Zoological Research, 2011, 32(1): 4-10.  doi: 10.3724/SP.J.1141.2011.01004
    [11] ZHANG Ding, GAO Li, ZHANG Yuan-xu, SUN Li, FENG Yue, HE You-wen, XIA Xue-shan, ZHAN. Crucial Factors for de novo Establishment of Long-term Primary Culture of Tree Shrew Hepatocytes. Zoological Research, 2009, 30(1): 24-30.  doi: 10.3724/SP.J.1141.2009.01024
    [12] YANG Min, ZHANG Chi-yu, BEN Kun-long. Cloning and Sequence Analysis of Cyclin T1 cDNA from Tree Shrew (Tupaia belangeri). Zoological Research, 2003, 24(3): 205-210.
    [13] ZHANG Li, BEN Kun-Long. In vitro Infection of Tree Shrew Immunocytes with Human Immunodeficiency Virus Type Ⅰ. Zoological Research, 2001, 22(1): 33-40.
    [14] ZHENG Zi-xiu, ZHONG Jin-yan. Studies on The Lactate Dehydrogenase Isoenzymes of Tree Shrew (Tupaia belangeri chinensis) Tissues:An Electrophoretic Analysis on The Agarose Gel ). Zoological Research, 1991, 12(1): 85-91.
    [15] CAO Xiao-mei. Microscopic Structure of Ovary and Ovarian Activity of Different Seasons in Tree Shrew (Tupaia belangeri chinensis). Zoological Research, 1990, 11(1): 17-24.
    [16] YE Zhi-zhang, PENG Yen-zhang, PAN Ru-liang, WANG Hong. Arterial System in Chinese Tree Shrew (Tupaia belangeri chinensis). Zoological Research, 1990, 11(2): 131-138.
    [17] ZOU Ru-jin, TIAN Bao-pin, JI Wei-zhi, LI Rui-yuan. Research on The Piebaldism of Tree Shrews Breeding in The Captivity. Zoological Research, 1989, 10(zk): 68-78.
    [18] CAO Xiao-mei. Seasonal Changes in Spermatogenesis of Tree Shrew (Tupaia Belangeri Chinensis). Zoological Research, 1989, 10(1): 15-21.
    [19] MA Cai-xia, MA Kun, SHI Li-ming. Electron Microscopic Observations on The Synaptonemal Complex in Spermatocytes of The Tree Shrew (Tupaiabelangeri Chinensis). Zoological Research, 1989, 10(zk): 29-33.
    [20] ZHANG Ya-ping, ZHANG Bing, SHI Li-ming. Restriction Maps of Mitochondrial DNA of Slow Loris and Tree Shrew. Zoological Research, 1989, 10(zk): 79-89.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2172) PDF downloads(2279) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint