Volume 31 Issue 4
Jul.  2010
Turn off MathJax
Article Contents
CHEN Jun, LI Qi, KONG Ling-Feng, ZHENG Xiao-Dong, YU Rui-Hai. COI-based DNA Barcoding in Tapetinae Species (Mollusca, Bivalvia, Veneridae) along the Coast of CHINA. Zoological Research, 2010, 31(4): 345-352. doi: 10.3724/SP.J.1141.2010.04345
Citation: CHEN Jun, LI Qi, KONG Ling-Feng, ZHENG Xiao-Dong, YU Rui-Hai. COI-based DNA Barcoding in Tapetinae Species (Mollusca, Bivalvia, Veneridae) along the Coast of CHINA. Zoological Research, 2010, 31(4): 345-352. doi: 10.3724/SP.J.1141.2010.04345

COI-based DNA Barcoding in Tapetinae Species (Mollusca, Bivalvia, Veneridae) along the Coast of CHINA

doi: 10.3724/SP.J.1141.2010.04345
More Information
  • Corresponding author: LI Qi
  • Received Date: 2010-01-27
  • Rev Recd Date: 2010-04-27
  • Publish Date: 2010-08-22
  • DNA barcoding has exhibited charming effectiveness in species diagnosis, but some studies suggested the proportion of taxa that cannot be barcode-distinguished was still high. In the present study, the efficiency of the DNA barcoding for delimiting species of subfamily Tapetinae along the coast of China was tested. Fifty one original COI sequences of 11 species in five genera were analyzed. Among these sequences, 43 haplotypes were identified. Saturation plots generated for DNA barcode revealed that transitions became saturated after 10% to 15% sequence divergence. However, transversions were not saturated. Excluding Ruditapes variegata haplotype Hap33 that might be the result of a hybridization event, our finding showed that K2P-distances between conspeci?c sequences varied from 0% to 2.02% (0.46% on average), distances between congeneric sequences were from 17.21% to 32.24% (24.96% on average), and all conspeci?cs clustered together in the phylogentic trees. The proportion of individuals that can be distinguished by DNA barcoding was approximately 98% among 51 individuals analyzed in this study. Thus, the results evidenced that subfamily Tapetidae species can be efficiently identified through the use of DNA barcoding.
  • loading
  • [1]
    Avise JC. 2000. Phylogeography: the History and Formation of Species [M]. Cambridge: Harvard University Press.Ball SL, Hebert PDN, Burian SK. 2005. Biological identi?cations of mayflies (Ephemeroptera) using DNA barcodes [J]. J North Am Benthol Soc, 24(3): 508-524.Chen AH, Li ZX, Feng GN. 2009. Phylogenetic relationships of the genus Meretrix (Mollusca: Veneridae) based on mitochondrial COI gene sequences[J]. Zool Res, 30(3): 233-239.Desalle R, Egan MG, Siddall M. 2005. The unholy trinity: taxonomy, species delimitation, and DNA barcoding [J]. Philos T R Soc B, 360: 1905-1916.Ekrem T, Willassen T, Stur E. 2007. A comprehensive DNA sequence library is essential for identification barcodes [J]. Mol Phylogenet Evol, 43(2): 530-542.Johnson SB, Waren A, Vrijenhoek RC. 2008. DNA barcoding of Lepetodrilus limpets reveals cryptic species [J]. J Shellfish Res, 27(1): 43-51.Kappner I, Bieler R. 2006. Phylogeny of venus clams (Bivalvia: Venerinae) as inferred from nuclear and mitochondrial gene sequences [J]. Mol Phylogenet Evol, 40(2): 317-331.Fischer-Piette E, Metivier B. 1971. Revision des Tapetinae (Mollusques, Bivalves) [J]. Mem Mus Nat d’Hist Nat Ser A: Zool, 71: 1-106.Folmer OM, Black W, Hoeh R. 1994. DNA primers for ampli?cation of mitochondrial cytochrome C oxidase subunit I from metazoan invertebrates [J]. Mar Mol Biol Biotech, 3(5): 294-299.Habe T. 1977. Systematic of Mollusca in Japan: Bivalvia and Scaphopoda[M]. Tokyo: Hokyoryukan, 147-270. (in Japanese)Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [J]. Nucleic Acids Symp Ser, 41: 95-98.Harte M. 1992. A new approach to the study of bivalve evolution [J]. Am Malac Bull, 9(2): 199-206.Hebert PDN, Ratnasingham S, deWard JR. 2003. Barcoding animal life: Cytochrome c oxidase subunit I divergences among closely related species [J]. Proc R Soc: Lond B (Suppl), 270: 96-99.Keen AM. 1951. Outline of a proposed classification of the pelecypod family Veneridae [J]. Min Couch Club S Calif, 113: 1-10.Kimura M. 1980. A simple method of estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences [J]. J Mol Evol, 16(2): 111-120.Moritz C, Cicero C. 2004. DNA barcoding: Promise and pitfalls [J]. PLoS Biol, 2(10): 1529-1531.Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics [M]. New York: Oxford University Press.Page RDM. 1996. TREEVIEW: An application to display phylogenetic trees on personal computers [J]. Comput Appl Biosci, 12(4): 357-358.Posada D. 2008. jModelTest: Phylogenetic Model Averaging [J]. Mol Biol Evol, 25(7): 1253-1256.Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models [J]. Bioinformatics, 19: 1572-1574.Rozas J, Sanchez DJC, Messeguer X. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods [J]. Bioinformatics, 19(18): 2496-2497.Schlei OL, Crete-Lafreniere A, Whiteley AR. 2008. DNA barcoding of eight North American coregonine species [J]. Mol Ecol Resour, 8(6): 1212-1218.Shen YB, Li JL, Feng BB. 2009. Genetic analysis of cultured and wild populations of Mytilus coruscus based on mitochondrial DNA[J]. Zool Res, 30(3): 240-246.Tamura K, Dudley J, Nei M. 2007. Mega 4: Molecular evolutionary genetics analysis (mega) software version 4.0 [J]. Mol Biol Evol, 24(8): 1596-1599.Thompson JD, Higgins DG, Gibson TJ. 1994. ClustalW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice [J]. Nucleic Acids Res, 22: 4673-4680.Toffoli D, Hrbek T, Araújo MLG, de Almeida MP, Charvet-Almeida P, Farias IP. 2008. A test of the utility of DNA barcoding in the radiation of the freshwater stingray genus Potamotrygon (Potamotrygonidae, Myliobatiformes) [J]. Genet Mol Biol (Suppl), 31(1): 324-336.Ward RD, Holmes HB, O'Hara TD. 2008. DNA barcoding discriminates echinoderm species [J]. Mol Ecol Resour, 8(6): 1202-1211.Ward RD. 2009. DNA barcode divergence among species and genera of birds and fishes [J]. Mol Ecol Resour, 9(4): 1077-1085.Xia X, Xie Z. 2001. DAMBE: Software package for data analysis in molecular biology and evolution [J]. J Hered, 92(4): 371-373.Zheng WJ, Zhu SH, Shen XQ, Liu BQ, Pan ZC, Ye YF. 2009. Genetic differentiation of Tegillarca granosa based on mitochondrial COI gene sequences[J]. Zool Res, 30(1) 17-23. [郑文娟, 朱世华, 沈锡权, 刘必谦, 潘志崇, 叶央芳. 2009. 基于线粒体COI基因序列探讨泥蚶的遗传分化. 动物学研究, 30(1): 17-23.]Zhuang QQ. 2003. Fauna Sinica Phyllum Mollusca Class Bibalvia Family Veneridae [M]. Beijing: Science Press, 157-214. [庄启谦. 2001. 中国动物志软体动物门双壳纲帘蛤科. 北京: 科学出版社, 157-214.]

  • Relative Articles

    [1] Florian Reveillion, Remi Wattier, Sophie Montuire, Leonardo Sousa Carvalho, Loïc Bollache. Cryptic diversity within three South American whip spider species (Arachnida, Amblypygi). Zoological Research, 2020, 41(5): 595-598.  doi: 10.24272/j.issn.2095-8137.2020.068
    [2] Thy Neang, Somaly Chan, Nikolay A. Poyarkov, Jr.. A new species of smooth skink (Squamata: Scincidae: Scincella) from Cambodia. Zoological Research, 2018, 39(3): 220-240.  doi: 10.24272/j.issn.2095-8137.2018.008
    [3] Wen-Hui Nie, Jin-Huan Wang, Wei-Ting Su, Yu Hu, Shui-Wang He, Xue-Long Jiang, Kai He. Species identification of crested gibbons (Nomascus) in captivity in China using karyotyping- and PCR-based approaches. Zoological Research, 2018, 39(5): 356-363.  doi: 10.24272/j.issn.2095-8137.2018.036
    [4] Chun-Xia Wang, Xin Xu, Shu-Qiang Li. Integrative taxonomy of Leptonetela spiders (Araneae, Leptonetidae), with descriptions of 46 new species. Zoological Research, 2017, 38(6): 321-448.  doi: 10.24272/j.issn.2095-8137.2017.076
    [5] Xiu-Feng LI, Chong HAN, Cai-Rong ZHONG, Jun-Qiu XU, Jian-Rong HUANG. Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I (COI) gene. Zoological Research, 2016, 37(5): 307-312.  doi: 10.13918/j.issn.2095-8137.2016.5.307
    [6] Ke JIANG, Kai WANG, Da-Hu ZOU, Fang YAN, Pi-Peng LI, Jing CHE. A new species of the genus Scutiger (Anura: Megophryidae) from Medog of southeastern Tibet, China. Zoological Research, 2016, 37(1): 21-30.  doi: 10.13918/j.issn.2095-8137.2016.1.21
    [7] Ke JIANG, Kai WANG, Fang YAN, Jiang XIE, Da-Hu ZOU, Wu-Lin LIU, Jian-Ping JIANG, Cheng LI, Jing CHE. A new species of the genus Amolops (Amphibia: Ranidae) from southeastern Tibet, China. Zoological Research, 2016, 37(1): 31-40.  doi: 10.13918/j.issn.2095-8137.2016.1.31
    [8] Jing CHE, Kai WANG. AmphibiaChina: an online database of Chinese Amphibians. Zoological Research, 2016, 37(1): 57-59.  doi: 10.13918/j.issn.2095-8137.2016.1.57
    [9] LÜ Hong-Juan, HUANG Yuan. Phylogenetic relationship among some groups of orthopteran based on complete sequences of the mitochondrial COI gene. Zoological Research, 2012, 33(3): 319-328.  doi: 10.3724/SP.J.1141.2012.03319
    [10] WANG Cheng-Ye, FENG Ying, CHEN Xiao-Ming. DNA barcoding analysis of processed medicinal insect Catharsius molossus. Zoological Research, 2012, 33(6): 597-602.  doi: 10.3724/SP.J.1141.2012.06597
    [11] CHENG Lei, CHANG Yu-Mei, LU Cui-Yun, CAO Ding-Cheng, SUN Xiao-Wen. DNA barcoding and species and subspecies classification within genus Carassius. Zoological Research, 2012, 33(5): 463-472.  doi: 10.3724/SP.J.1141.2012.05463
    [12] ZHANG Qing-yi, CHENG Qi-qun, GUAN Wei-bing. Mitochondrial COI Gene Sequence Variation and Taxonomic Status of Three Macrobrachium Species. Zoological Research, 2009, 30(6): 613-619.  doi: 10.3724/SP.J.1141.2009.06613
    [13] CHEN Ai-hui, LI Zhao-xia, FENG Gong-neng. Phylogenetic Relationships of the Genus Meretrix (Mollusca: Veneridae) Based on Mitochondrial COI Gene Sequences. Zoological Research, 2009, 30(3): 233-239.  doi: 10.3724/SP.J.1141.2009.03233
    [14] ZHONG Ping-hua, SHAO Ming-qin, DAI Nian-hua, ZENG Fan-wei. Genetic Differentiation of Tegillarca granosa Based on Mitochondrial COI Gene Sequences. Zoological Research, 2009, 30(1): 17-23.  doi: 10.3724/SP.J.1141.2009.01017
    [15] LIANG Gang, LI Tao, YIN Zuo-hua, LEI Fu-min. Molecular Phylogenetic Analysis of Some Fringillidae Species Based on Mitochondrial CoI Gene Sequences. Zoological Research, 2008, 29(5): 465-475.  doi: 10.3724/SP.J.1141.200805465
    [16] , , , , . Phylogentic Relationships of Butterflies in the Subfamily Elymninae (Lepidoptera: Satyridae) Based on Mitochondrial ND1 and COI Gene Sequences. Zoological Research, 2007, 28(5): 477-484.
    [17] LEI Xin, LIAN Zhen-min, LEI Fu-min, *, YIN Zuo-hua, ZHAO Hong-feng. Phylogeny of Some Muscicapinae Genera and Species Inferred from Mitochondrial Gene COI Sequences. Zoological Research, 2007, 28(3): 291-296.
    [18] SU Bing, WANG Ying-Xiang, WANG Qi-Shan. Mitochondrial DNA Sequences Imply Anhui Musk Deer a Valid Species in Genus Moschus. Zoological Research, 2001, 22(3): 169-173.
    [19] YANG Zhao-qing, ZUO Yang-xian, CHEN Xin-wen, DING Bo, LUO Jing, ZHANG Ya-ping. 18S rRNA Gene of Sarcocystis hominis Cyst From Water Buffalo and Cattle. Zoological Research, 2000, 21(2): 133-138.
    [20] ZHANG Ya-ping. Genetic Variability and Conservation Relevance of The Sun Bear As Revealed by DNA Sequences. Zoological Research, 1996, 17(4): 459-468.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1942) PDF downloads(2092) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint