Volume 42 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Chuan-Ling Zhang, Yi-Jia Li, Shuang Lu, Ting Zhang, Rui Xiao, Huai-Rong Luo. Fluoxetine ameliorates depressive symptoms by regulating lncRNA expression in the mouse hippocampus. Zoological Research, 2021, 42(1): 28-42. doi: 10.24272/j.issn.2095-8137.2020.294
Citation: Chuan-Ling Zhang, Yi-Jia Li, Shuang Lu, Ting Zhang, Rui Xiao, Huai-Rong Luo. Fluoxetine ameliorates depressive symptoms by regulating lncRNA expression in the mouse hippocampus. Zoological Research, 2021, 42(1): 28-42. doi: 10.24272/j.issn.2095-8137.2020.294

Fluoxetine ameliorates depressive symptoms by regulating lncRNA expression in the mouse hippocampus

doi: 10.24272/j.issn.2095-8137.2020.294
Funds:  This work was supported by the Scientific Research Projects of Universities in Inner Mongolia Autonomous Region (NJZY111) and Natural Scientific Research Projects of Inner Mongolia Autonomous Region (2020MS03060)
More Information
  • Depression is a prevalent mental disorder that is associated with aging and contributes to increased mortality and morbidity. The overall prevalence of geriatric depression with clinically significant symptoms is currently on the rise. Recent studies have demonstrated that altered expressions of long non-coding RNAs (lncRNAs) in the brain affect neurodevelopment and manifest modulating functions during the depression. However, most lncRNAs have not yet been studied. Herein, we analyzed the transcriptome of dysregulated lncRNAs to reveal their expressions in a mouse model exhibiting depressive-like behaviors, as well as their corresponding response following antidepressant fluoxetine treatment. A chronic unpredictable mild stress (CUMS) mouse model was applied. A six-week fluoxetine intervention in CUMS-induced mice attenuated depressive-like behaviors. In addition, differential expression analysis of lncRNAs was performed following RNA-sequencing. A total of 282 lncRNAs (134 up-regulated and 148 down-regulated) were differentially expressed in CUMS-induced mice relative to non-stressed counterparts (P<0.05). Moreover, 370 differentially expressed lncRNAs were identified in CUMS-induced mice after fluoxetine intervention. Gene Ontology (GO) analyses showed an association between significantly dysregulated lncRNAs and protein binding, oxygen binding, and transport activity, while the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that these dysregulated lncRNAs might be involved in inflammatory response pathways. Fluoxetine effectively ameliorated the symptoms of depression in CUMS-induced mice by regulating the expression of lncRNAs in the hippocampus. The findings herein provide valuable insights into the potential mechanism underlying depression in elderly people.
  • loading
  • [1]
    Angelucci F, Aloe L, Jiménez-Vasquez P, Mathé AA. 2002. Electroconvulsive stimuli alter the regional concentrations of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in adult rat brain. The Journal of ECT, 18(3): 138−143. doi: 10.1097/00124509-200209000-00005
    Beyer JL. 2007. Managing depression in geriatric populations. Annals of Clinical Psychiatry, 19(4): 221−238. doi: 10.1080/10401230701653245
    Blazer DG. 2003. Depression in late life: review and commentary. The Journals of Gerontology: Series A, 58(3): M249−M265. doi: 10.1093/gerona/58.3.M249
    Bramham CR, Messaoudi E. 2005. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Progress in Neurobiology, 76(2): 99−125. doi: 10.1016/j.pneurobio.2005.06.003
    Bremner JD. 1984. Fluoxetine in depressed patients: a comparison with imipramine. The Journal of Clinical Psychiatry, 45(10): 414−419.
    Brunoni AR, Lopes M, Fregni F. 2008. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. International Journal of Neuropsychopharmacology, 11(8): 1169−1180. doi: 10.1017/S1461145708009309
    Camkurt MA, Acar Ş, Coşkun S, Güneş M, Güneş S, Yılmaz MF, et al. 2015. Comparison of plasma MicroRNA levels in drug naive, first episode depressed patients and healthy controls. Journal of Psychiatric Research, 69: 67−71.
    Casey DA. 1994. Depression in the elderly. South Medcal Jounal, 87(5): 559−563.
    Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. 2011. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147(2): 358−369.
    Chen DM, Meng L, Pei F, Zheng Y, Leng JY. 2017. A review of DNA methylation in depression. Journal of Clinical Neuroscience, 43: 39−46.
    Chen Z, Bu NP, Qiao XH, Zuo ZX, Shu YH, Liu ZL, et al. 2018. Forkhead Box M1 transcriptionally regulates the expression of long noncoding RNAs Snhg8 and Gm26917 to promote proliferation and survival of muscle satellite cells. Stem Cells, 36(7): 1097−1108.
    Cryan JF, Mombereau C, Vassout A. 2005. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neuroscience & Biobehavioral Reviews, 29(4–5): 571−625.
    Cui XL, Sun XY, Niu W, Kong LM, He MJ, Zhong AF., et al. 2016. Long non-coding RNA: potential diagnostic and therapeutic biomarker for major depressive disorder. Medical Science Monitor, 22: 5240−5248.
    Fiske A, Wetherell JL, Gatz M. 2009. Depression in older adults. Annual Review of Clinical Psychology, 5: 363−389. doi: 10.1146/annurev.clinpsy.032408.153621
    Flurkey K, Currer JM, Harrison DE. 2007. Mouse models in aging research. In: Fox JG, Davisson MT, Quimby FW, Barthold SW, Newcomer CE, Smith AL. The Mouse in Biomedical Research. 2nd ed. Amsterdam: Elsevier, 637−672.
    Gibbons A, Udawela M, Dean B. 2018. Non-coding RNA as novel players in the pathophysiology of schizophrenia. Non-Coding RNA, 4(2): 11.
    Guil S, Esteller M. 2012. Cis-acting noncoding RNAs: friends and foes. Nature Structural & Molecular Biology, 19(11): 1068−1075.
    Gururajan A, Clarke G, Dinan TG, Cryan JF. 2016. Molecular biomarkers of depression. Neuroscience & Biobehavioral Reviews, 64: 101−133.
    Hiles SA, Baker AL, de Malmanche T, Attia J. 2012. Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: a meta-analysis. Psychological Medicine, 42(10): 2015−2026. doi: 10.1017/S0033291712000128
    Huang X, Luo YL, Mao YS, Ji JL. 2017. The link between long noncoding RNAs and depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 73: 73−78. doi: 10.1016/j.pnpbp.2016.06.004
    Huang XY, Sun WY, Yan ZQ, Shi HR, Yang QL, Wang PF, et al. 2019. Integrative analyses of long non-coding RNA and mRNA involved in piglet ileum immune response to Clostridium perfringens Type C infection. Frontiers in Cellular and Infection Microbiology, 9: 130.
    Jani BD, McLean G, Nicholl BI, Barry SJE, Sattar N, Mair FS, et al. 2015. Risk assessment and predicting outcomes in patients with depressive symptoms: a review of potential role of peripheral blood based biomarkers. Frontiers in Human Neuroscience, 9: 18.
    Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8): 907−915. doi: 10.1038/s41587-019-0201-4
    Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei LP, et al. 2007. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research, 35(S2): W345−W349.
    Leung AKL, Sharp PA. 2010. MicroRNA functions in stress responses. Molecular Cell, 40(2): 205−215. doi: 10.1016/j.molcel.2010.09.027
    Lin MF, Jungreis I, Kellis M. 2011. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics, 27(13): i275−i282.
    Liu MY, Yin CY, Zhu LJ, Zhu XH, Xu C, Luo CX, et al. 2018. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nature Protocols, 13(7): 1686−1698. doi: 10.1038/s41596-018-0011-z
    Liu ZF, Li XR, Sun N, Xu Y, Meng YQ, Yang CX, et al. 2014. Microarray profiling and co-expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder. PLoS One, 9(3): e93388. doi: 10.1371/journal.pone.0093388
    Lopez JP, Fiori LM, Cruceanu C, Lin RX, Labonte B, Cates HM, et al. 2017. MicroRNAs 146a/b-5 and 425–3p and 24–3p are markers of antidepressant response and regulate MAPK/Wnt-system genes. Nature Communications, 8: 15497. doi: 10.1038/ncomms15497
    López-Muñoz F, Alamo C. 2009. Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Current Pharmaceutical Design, 15(14): 1563−1586.
    Maes M, Smith R, Scharpe S. 1995. The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology, 20(2): 111−116. doi: 10.1016/0306-4530(94)00066-J
    Miller AH, Raison CL. 2016. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nature Reviews Immunology, 16(1): 22−34. doi: 10.1038/nri.2015.5
    Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. 2011. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Current Neuropharmacology, 9(4): 530−552. doi: 10.2174/157015911798376262
    Ni XQ, Liao YZ, Li LM, Zhang XL, Wu ZZ. 2018. Therapeutic role of long non-coding RNA TCONS_00019174 in depressive disorders is dependent on Wnt/β-catenin signaling pathway. Journal of Integrative Neuroscience, 17(2): 125−132.
    Nollet M, Le Guisquet AM, Belzung C. 2013. Models of depression: unpredictable chronic mild stress in mice. Current Protocols in Pharmacology, 61(1): 5.65.
    Perez-Caballero L, Torres-Sanchez S, Bravo L, Mico JA, Berrocoso E. 2014. Fluoxetine: a case history of its discovery and preclinical development. Expert Opinion on Drug Discovery, 9(5): 567−578. doi: 10.1517/17460441.2014.907790
    Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3): 290−295. doi: 10.1038/nbt.3122
    Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. 2012. The Pfam protein families database. Nucleic Acids Research, 40(Database issue): D290−D301.
    Raedler TJ. 2011. Inflammatory mechanisms in major depressive disorder. Current Opinion in Psychiatry, 24(6): 519−525. doi: 10.1097/YCO.0b013e32834b9db6
    Raison CL, Capuron L, Miller AH. 2006. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends in Immunology, 27(1): 24−31. doi: 10.1016/j.it.2005.11.006
    Riva P, Ratti A, Venturin M. 2016. The long non-coding RNAs in neurodegenerative diseases: novel mechanisms of pathogenesis. Current Alzheimer Research, 13(11): 1219−1231.
    Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139−140. doi: 10.1093/bioinformatics/btp616
    Roy B, Wang QZ, Dwivedi Y. 2018. Long noncoding RNA-Associated transcriptomic changes in resiliency or susceptibility to depression and response to antidepressant treatment. The International Journal of Neuropsychopharmacology, 21(5): 461−472. doi: 10.1093/ijnp/pyy010
    Sampson SM. 2001. Treating depression with selective serotonin reuptake inhibitors: a practical approach. Mayo Clinic Proceedings, 76(7): 739−744.
    Sen S, Duman R, Sanacora G. 2008. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biological Psychiatry, 64(6): 527−532. doi: 10.1016/j.biopsych.2008.05.005
    Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou MM, Rosenbloom K, et al. 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Research, 15(8): 1034−1050. doi: 10.1101/gr.3715005
    Stelzhammer V, Haenisch F, Chan MK, Cooper JD, Steiner J, Steeb H, et al. 2014. Proteomic changes in serum of first onset, antidepressant drug-naïve major depression patients. International Journal of Neuropsychopharmacology, 17(10): 1599−1608. doi: 10.1017/S1461145714000819
    Strawbridge R, Young AH, Cleare AJ. 2017. Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatric Disease and Treatment, 13: 1245−1262. doi: 10.2147/NDT.S114542
    Sun L, Luo HT, Bu DC, Zhao GG, Yu KT, Zhang CH, et al. 2013. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research, 41(17): e166. doi: 10.1093/nar/gkt646
    Surget A, Belzung C. 2008. Unpredictable chronic mild stress in mice. In: Kalueff AV, LaPorte JL. Experimental Animal Models in Neurobehavioral Research. New York, NY: Nova Science, 79−112.
    Tang J, Yu YZ, Yang W. 2017. Long noncoding RNA and its contribution to autism spectrum disorders. CNS Neuroscience & Therapeutics, 23(8): 645−656.
    Wan YQ, Feng JG, Li M, Wang MZ, Liu L, Liu XR, et al. 2018. Prefrontal cortex miR-29b-3p plays a key role in the antidepressant-like effect of ketamine in rats. Experimental & Molecular Medicine, 50(10): 1−14.
    Wapinski O, Chang HY. 2011. Long noncoding RNAs and human disease. Trends in Cell Biology, 21(6): 354−361. doi: 10.1016/j.tcb.2011.04.001
    Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. 1987. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology, 93(3): 358−364.
    Xiao R, Park Y, Dirisala VR, Zhang YP, Um SJ, Lee HT, et al. 2005. Identification of genes differentially expressed in wild type and Purkinje cell degeneration mice. Molecules and Cells, 20(2): 219−227.
    Yalcin I, Belzung C, Surget A. 2008. Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behavioural Brain Research, 193(1): 140−143. doi: 10.1016/j.bbr.2008.04.021
    Yankelevitch-Yahav R, Franko M, Huly A, Doron R. 2015. The forced swim test as a model of depressive-like behavior. Journal of Visualized Experiments, (97): e52587.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (238) PDF downloads(24) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint