Volume 42 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Han Yang, Bin Lyu, Hai-Qiang Yin, Shu-Qiang Li. Comparative transcriptomics highlights convergent evolution of energy metabolic pathways in group-living spiders. Zoological Research, 2021, 42(2): 195-206. doi: 10.24272/j.issn.2095-8137.2020.281
Citation: Han Yang, Bin Lyu, Hai-Qiang Yin, Shu-Qiang Li. Comparative transcriptomics highlights convergent evolution of energy metabolic pathways in group-living spiders. Zoological Research, 2021, 42(2): 195-206. doi: 10.24272/j.issn.2095-8137.2020.281

Comparative transcriptomics highlights convergent evolution of energy metabolic pathways in group-living spiders

doi: 10.24272/j.issn.2095-8137.2020.281
Funds:  This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000) to S.Q.L
More Information
  • Although widely thought to be aggressive, solitary, and potentially cannibalistic, some spider species have evolved group-living behaviors. The distinct transition provides the framework to uncover group-living evolution. Here, we conducted a comparative transcriptomic study and examined patterns of molecular evolution in two independently evolved group-living spiders and twelve solitary species. We report that positively selected genes among group-living spider lineages are significantly enriched in nutrient metabolism and autophagy pathways. We also show that nutrient-related genes of group-living spiders convergently experience amino acid substitutions and accelerated relative evolutionary rates. These results indicate adaptive convergence of nutrient metabolism that may ensure energy supply in group-living spiders. The decelerated evolutionary rate of autophagy-related genes in group-living lineages is consistent with an increased constraint on energy homeostasis as would be required in a group-living environment. Together, the results show that energy metabolic pathways play an important role in the transition to group-living in spiders.
  • loading
  • [1]
    Andrews S. 2010. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
    Avilés L, Guevara J. 2017. Sociality in spiders. In: Rubenstein DR and Abbot P. Comparative Social Evolution. Cambridge: Cambridge University Press, 188–223.
    Bazazi S, Arganda S, Moreau M, Jeanson R, Dussutour A. 2016. Responses to nutritional challenges in ant colonies. Animal Behaviour, 111: 235−249. doi: 10.1016/j.anbehav.2015.10.021
    Bechsgaard J, Schou MF, Vanthournout B, Hendrickx F, Knudsen B, Settepani V, et al. 2019. Evidence for faster X chromosome evolution in spiders. Molecular Biology and Evolution, 36(6): 1281−1293. doi: 10.1093/molbev/msz074
    Bilde T, Lubin Y. 2001. Kin recognition and cannibalism in a subsocial spider. Journal of Evolutionary Biology, 14(6): 959−966. doi: 10.1046/j.1420-9101.2001.00346.x
    Brodschneider R, Crailsheim K. 2010. Nutrition and health in honey bees. Apidologie, 41(3): 278−294. doi: 10.1051/apido/2010012
    Buskirk RE. 1981. Sociality in the arachnida. In: Hermann HR. Social Insects. New York: Academic Press, 281–367.
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15): 1972−1973. doi: 10.1093/bioinformatics/btp348
    Chen SF, Zhou YQ, Chen YR, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17): i884−i890. doi: 10.1093/bioinformatics/bty560
    Cheng DQ, Piel WH. 2018. The origins of the psechridae: web-building lycosoid spiders. Molecular Phylogenetics and Evolution, 125: 213−219. doi: 10.1016/j.ympev.2018.03.035
    Chiara V, Ramon Portugal F, Jeanson R. 2019. Social intolerance is a consequence, not a cause, of dispersal in spiders. PLoS Biology, 17(7): e3000319. doi: 10.1371/journal.pbio.3000319
    Cremer S, Pull CD, Fürst MA. 2018. Social immunity: emergence and evolution of colony-level disease protection. Annual Review of Entomology, 63: 105−123. doi: 10.1146/annurev-ento-020117-043110
    Elbroch LM, Levy M, Lubell M, Quigley H, Caragiulo A. 2017. Adaptive social strategies in a solitary carnivore. Science Advances, 3(10): e1701218. doi: 10.1126/sciadv.1701218
    Evans TA. 1998. Factors influencing the evolution of social behaviour in Australian crab spiders (Araneae: Thomisidae). Biological Journal of the Linnean Society, 63(2): 205−219. doi: 10.1111/j.1095-8312.1998.tb01514.x
    Fernández R, Kallal RJ, Dimitrov D, Ballesteros JA, Arnedo MA, Giribet G, et al. 2018. Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Current Biology, 28(9): 1489−1497. doi: 10.1016/j.cub.2018.03.064
    Fischman BJ, Woodard SH, Robinson GE. 2011. Molecular evolutionary analyses of insect societies. Proceedings of the National Academy of Sciences of the United States of America, 108(S2): 10847−10854.
    Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23): 3150−3152. doi: 10.1093/bioinformatics/bts565
    Gilbert C, McCafferty D, Le Maho Y, Martrette JM, Giroud S, Blanc S, et al. 2010. One for all and all for one: the energetic benefits of huddling in endotherms. Biological Reviews, 85(3): 545−569.
    Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7): 644−652. doi: 10.1038/nbt.1883
    Guevara J, Avilés L. 2015. Ecological predictors of spider sociality in the Americas. Global Ecology and Biogeography, 24(10): 1181−1191. doi: 10.1111/geb.12342
    Hamilton WD. 1971. Geometry for the selfish herd. Journal of Theoretical Biology, 31(2): 295−311. doi: 10.1016/0022-5193(71)90189-5
    Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics resources. Nature Protocols, 4(1): 44−57. doi: 10.1038/nprot.2008.211
    Kapheim KM, Pan HL, Li C, Salzberg SL, Puiu D, Magoc T, et al. 2015. Genomic signatures of evolutionary transitions from solitary to group living. Science, 348(6239): 1139−1143. doi: 10.1126/science.aaa4788
    Kim KW. 2000. Dispersal behaviour in a subsocial spider: group conflict and the effect of food availability. Behavioral Ecology and Sociobiology, 48(3): 182−187. doi: 10.1007/s002650000216
    Korb J, Heinze J. 2016. Major hurdles for the evolution of sociality. Annual Review of Entomology, 61: 297−316. doi: 10.1146/annurev-ento-010715-023711
    Kowalczyk A, Meyer WK, Partha R, Mao WG, Clark NL, Chikina M. 2019. RERconverge: an R package for associating evolutionary rates with convergent traits. Bioinformatics, 35(22): 4815−4817. doi: 10.1093/bioinformatics/btz468
    Krafft B, Horel A, Julita JM. 1986. Influence of food supply on the duration of the gregarious phase of a maternal-social spider, Coelotes terrestris (Araneae, Agelenidae). Journal of Arachnology, 14(2): 219−226.
    Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. 2004. The role of autophagy during the early neonatal starvation period. Nature, 432(7020): 1032−1036. doi: 10.1038/nature03029
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics, 25(16): 2078−2079. doi: 10.1093/bioinformatics/btp352
    Libbrecht R, Oxley PR, Kronauer DJC. 2018. Clonal raider ant brain transcriptomics identifies candidate molecular mechanisms for reproductive division of labor. BMC Biology, 16(1): 89. doi: 10.1186/s12915-018-0558-8
    Lin YC, Li SQ. 2008. Description on a new Philoponella species (Araneae, Uloboridae), the first record of social spiders from China. Acta Zootaxonomica Sinica, 33(2): 260−263.
    Liu SL, Aagaard A, Bechsgaard J, Bilde T. 2019. DNA methylation patterns in the social spider, Stegodyphus dumicola. Genes, 10(2): 137. doi: 10.3390/genes10020137
    Löytynoja A, Goldman N. 2005. An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Academy of Sciences of the United States of America, 102(30): 10557−10562. doi: 10.1073/pnas.0409137102
    Lubin YD. 1974. Adaptive advantages and the evolution of colony formation in Cyrtophora (Araneae: Araneidae). Zoological Journal of the Linnean Society, 54(4): 321−339. doi: 10.1111/j.1096-3642.1974.tb00806.x
    Macdonald DW. 1983. The ecology of carnivore social behaviour. Nature, 301(5899): 379−384. doi: 10.1038/301379a0
    Majer M, Svenning JC, Bilde T. 2013. Habitat productivity constrains the distribution of social spiders across continents - case study of the genus Stegodyphus. Frontiers in Zoology, 10(1): 9. doi: 10.1186/1742-9994-10-9
    Maynard Smith J, Szathmáry E. 1995. The Major Transitions in Evolution. Oxford: Oxford University Press.
    Michener CD. 1958. The evolution of social behavior in bees. Proceedings of the Tenth International Congress of Entomology.
    Michener CD. 1969. Comparative social behavior of bees. Annual Review of Entomology, 14: 299−342. doi: 10.1146/annurev.en.14.010169.001503
    Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T. 2014. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics, 30(17): i541−i548. doi: 10.1093/bioinformatics/btu462
    Mizushima N. 2007. Autophagy: process and function. Genes & Development, 21(22): 2861−2873.
    Moreno-Hagelsieb G, Latimer K. 2008. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics, 24(3): 319−324. doi: 10.1093/bioinformatics/btm585
    Nentwig W. 1985. Social spiders catch larger prey: a study of Anelosimus eximius (Araneae: Theridiidae). Behavioral Ecology and Sociobiology, 17(1): 79−85. doi: 10.1007/BF00299433
    Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T. 2010. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Research, 38(S2): W23−W28.
    Powers KS, Avilés L. 2007. The role of prey size and abundance in the geographical distribution of spider sociality. Journal of Animal Ecology, 76(5): 995−1003. doi: 10.1111/j.1365-2656.2007.01267.x
    Rehan SM, Toth AL. 2015. Climbing the social ladder: the molecular evolution of sociality. Trends in Ecology & Evolution, 30(7): 426−433.
    Riechert SE, Roeloffs R, Echternacht AC. 1986. The ecology of the cooperative spider Agelena consociata in equatorial Africa (Araneae, Agelenidae). The Journal of Arachnology, 14(2): 175−191.
    Riechert SE. 1985. Why do some spiders cooperate? Agelena consociata, a case study. The Florida Entomologist, 68(1): 105−116. doi: 10.2307/3494333
    Rubenstein DR, Lovette IJ. 2007. Temporal environmental variability drives the evolution of cooperative breeding in birds. Current Biology, 17(16): 1414−1419. doi: 10.1016/j.cub.2007.07.032
    Rypstra AL. 1983. The importance of food and space in limiting web-spider densities; a test using field enclosures. Oecologia, 59(2-3): 312−316. doi: 10.1007/BF00378855
    Rypstra AL. 1986. High prey abundance and a reduction in cannibalism: the first step to sociality in spiders (Arachnida). The Journal of Arachnology, 14(2): 193−200.
    Rypstra AL. 1989. Foraging success of solitary and aggregated spiders: insights into flock formation. Animal Behaviour, 37: 274−281. doi: 10.1016/0003-3472(89)90116-4
    Rypstra AL. 1990. Prey capture and feeding efficiency of social and solitary spiders: a comparison. Acta Zoologica Fennica, 190: 339−343.
    Sandidge JS. 2003. Scavenging by brown recluse spiders. Nature, 426(6962): 30.
    Sanggaard KW, Bechsgaard JS, Fang XD, Duan JJ, Dyrlund TF, Gupta V, et al. 2014. Spider genomes provide insight into composition and evolution of venom and silk. Nature Communications, 5: 3765. doi: 10.1038/ncomms4765
    Sato T, Yamanishi Y, Kanehisa M, Toh H. 2005. The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics, 21(17): 3482−3489. doi: 10.1093/bioinformatics/bti564
    Schneider JM. 2002. Reproductive state and care giving in Stegodyphus (Araneae: Eresidae) and the implications for the evolution of sociality. Animal Behaviour, 63(4): 649−658. doi: 10.1006/anbe.2001.1961
    Settepani V, Bechsgaard J, Bilde T. 2016. Phylogenetic analysis suggests that sociality is associated with reduced effectiveness of selection. Ecology and Evolution, 6(2): 469−477. doi: 10.1002/ece3.1886
    Settepani V, Schou MF, Greve M, Grinsted L, Bechsgaard J, Bilde T. 2017. Evolution of sociality in spiders leads to depleted genomic diversity at both population and species levels. Molecular Ecology, 26(16): 4197−4210. doi: 10.1111/mec.14196
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11): 2498−2504. doi: 10.1101/gr.1239303
    Shear WA. 1970. The evolution of social phenomena in spiders. Bulletin of the British Arachnological Society, 1(5): 65−76.
    Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL. 2015. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Molecular Biology and Evolution, 32(5): 1342−1353. doi: 10.1093/molbev/msv022
    Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9): 1312−1313. doi: 10.1093/bioinformatics/btu033
    Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100(16): 9440−9445. doi: 10.1073/pnas.1530509100
    Tong C, Najm GM, Pinter-Wollman N, Pruitt JN, Linksvayer TA. 2020. Comparative genomics identifies putative signatures of sociality in spiders. Genome Biology and Evolution, 12(3): 122−133. doi: 10.1093/gbe/evaa007
    Toyama M. 1999. Adaptive advantages of maternal care and matriphagy in a foliage spider, Chiracanthium japonicum (Araneae: Coubionidae). Journal of Ethology, 17(1): 33−39. doi: 10.1007/BF02769295
    Uetz GW. 1988. Group forating in colonial web-building spiders: evidence for risk-sensitivity. Behavioral Ecology and Sociobiology, 22(4): 265−270. doi: 10.1007/BF00299841
    Uetz GW. 1989. The "ricochet effect" and prey capture in colonial spiders. Oecologia, 81(2): 154−159. doi: 10.1007/BF00379799
    Vanthournout B, Greve M, Bruun A, Bechsgaard J, Overgaard J, Bilde T. 2016. Benefits of group living include increased feeding efficiency and lower mass loss during desiccation in the social and inbreeding spider Stegodyphus dumicola. Frontiers in Physiology, 7: 18.
    Ward P, Zahavi A. 1973. The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis, 115(4): 517−534.
    Ward PI. 1986. Prey availability increases less quickly than nest size in the social spider Stegodyphus mimosarum. Behaviour, 97(3-4): 213−225. doi: 10.1163/156853986X00603
    Whitehouse MEA, Lubin Y. 2005. The functions of societies and the evolution of group living: spider societies as a test case. Biological Reviews, 80(3): 347−361. doi: 10.1017/S1464793104006694
    Wilson EO. 1971. The Insect Societies. Cambridge: Harvard University Press.
    Wise DH. 2006. Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annual Review of Entomology, 51: 441−465. doi: 10.1146/annurev.ento.51.110104.150947
    Woodard SH, Fischman BJ, Venkat A, Hudson ME, Varala K, Cameron SA, et al. 2011. Genes involved in convergent evolution of eusociality in bees. Proceedings of the National Academy of Sciences of the United States of America, 108(18): 7472−7477. doi: 10.1073/pnas.1103457108
    WSC. [2021-01-30]. World Spider Catalog Version 22.0. Natural History Museum Bern. http://wsc.nmbe.ch.
    Yang ZG. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8): 1586−1591. doi: 10.1093/molbev/msm088
    Yip EC, Rayor LS. 2014. Maternal care and subsocial behaviour in spiders. Biological Reviews, 89(2): 427−449. doi: 10.1111/brv.12060
    Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. 2018. Ensembl 2018. Nucleic Acids Research, 46(D1): D754−D761. doi: 10.1093/nar/gkx1098
    Zhang J, Kumar S. 1997. Detection of convergent and parallel evolution at the amino acid sequence level. Molecular Biology and Evolution, 14(5): 527−536. doi: 10.1093/oxfordjournals.molbev.a025789
    Zhang JZ, Nielsen R, Yang ZH. 2005. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution, 22(12): 2472−2479. doi: 10.1093/molbev/msi237
    Zou ZT, Zhang JZ. 2015. Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations?. Molecular Biology and Evolution, 32(8): 2085−2096. doi: 10.1093/molbev/msv091
  • ZR-2020-281Supplementary.zip
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (614) PDF downloads(77) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint