Volume 42 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
Zhi-Feng Ding, Chun-Lan Zhang, Wen-Sui Zhang, Qian-Min Yuan, Long-Wu Wang, Gang Ren, En Li, Hui-Jian Hu, Wei Liang. Determining the level of extra-pair paternity in yellow-bellied prinias, a socially monogamous passerine. Zoological Research, 2021, 42(1): 108-115. doi: 10.24272/j.issn.2095-8137.2020.079
Citation: Zhi-Feng Ding, Chun-Lan Zhang, Wen-Sui Zhang, Qian-Min Yuan, Long-Wu Wang, Gang Ren, En Li, Hui-Jian Hu, Wei Liang. Determining the level of extra-pair paternity in yellow-bellied prinias, a socially monogamous passerine. Zoological Research, 2021, 42(1): 108-115. doi: 10.24272/j.issn.2095-8137.2020.079

Determining the level of extra-pair paternity in yellow-bellied prinias, a socially monogamous passerine

doi: 10.24272/j.issn.2095-8137.2020.079
Funds:  This work was supported by the National Natural Science Foundation of China (31572257 to H.J.H., 31660617 to L.W.W., 31472013 and 31970427 to W.L.) and Guangdong Academy of Sciences (GDAS) Special Project of Science and Technology Development (2018GDASCX-0107)
More Information
  • Previous work based on molecular evidence has shown that most socially monogamous birds follow a genetic polyandrous mating system. However, our knowledge about avian mating systems is heavily biased toward the north temperate zone, with data on tropical birds remaining relatively scarce. This uneven distribution of both phylogenetic and spatial sampling has hampered our understanding and interpretation of results. In this study, we investigated the frequency of extra-pair paternity (EPP) in a tropical population of yellow-bellied prinias (Prinia flaviventris) in Guangxi, southern China. A total of 129 individuals belonging to 24 nests were sampled, among which 12 out of 83 chicks (14.46%) in seven nests were found to be EPP offspring. In nests in which all nestlings were sampled, only five out of 56 chicks were EPP offspring, accounting for an unbiased EPP rate of 8.93%. This rate is below the average rate of EPP in the family Sylviidae. The possible causes of EPP in prinias and the occurrence of EPP in birds with high resource investment and intensive parental care are discussed. This study highlights the value of genome-wide markers in determining relatedness in a wild bird species without a reference genome.
  • loading
  • [1]
    Bonier F, Eikenaar C, Martin PR, Moore IT. 2014. Extrapair paternity rates vary with latitude and elevation in Emberizid sparrows. The American Naturalist, 183(1): 54−61. doi: 10.1086/674130
    [2]
    Brouwer L, Van De Pol M, Aranzamendi NH, Bain G, Baldassarre DT, Brooker LC, , et al. 2017. Multiple hypotheses explain variation in extra‐pair paternity at different levels in a single bird family. Molecular Ecology, 26(23): 6717−6729. doi: 10.1111/mec.14385
    [3]
    Brouwer L, Griffith SC. 2019. Extra‐pair paternity in birds. Molecular Ecology, 28(22): 4864−4882. doi: 10.1111/mec.15259
    [4]
    Burke T, Bruford MW. 1987. DNA fingerprinting in birds. Nature, 327(6118): 149−152. doi: 10.1038/327149a0
    [5]
    Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. 2013. Stacks: an analysis tool set for population genomics. Molecular Ecology, 22(11): 3124−3140. doi: 10.1111/mec.12354
    [6]
    Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. 2011. Stacks: building and genotyping loci De novo from short-read sequences. G3, 1(3): 171−182. doi: 10.1534/g3.111.000240
    [7]
    Cordero PJ, Wetton JH, Parkin DT. 1999. Extra-pair paternity and male badge size in the house sparrow. Journal of Avian Biology, 30(1): 97−102. doi: 10.2307/3677248
    [8]
    Ding ZF, Zhang WS, Yuan QM, Wang LW, Ren G, Li E, et al. 2020. Determining level of extra-pair paternity in the yellow-bellied prinia, a socially monogamous passerine. Dryad, dataset: https://doi.org/10.5061/dryad.73n5tb2v7.
    [9]
    Ding ZF, Ji F, Huang QL, Wang LW, Jiang AW, Zhang CL, et al. 2017a. Brood sex ratio in the yellow-bellied prinia (Prinia flaviventris). Avian Research, 8: 15. doi: 10.1186/s40657-017-0074-5
    [10]
    Ding ZF, Liang JC, Pan XY, Hu HJ. 2016. Feeding behavior and nestling growth of yellow-bellied prinia (Prinia flaviventris). Chinese Journal of Zoology, 51(6): 969−976. (in Chinese)
    [11]
    Ding ZF, Liang JC, Zhou ZX, Feng YJ, Hu HJ. 2017b. Comparisons of breeding parameters of two prinia species. Chinese Journal of Zoology, 52(3): 417−422. (in Chinese)
    [12]
    Ding ZF, Tang SX, Zhang JX, Chen YZ, Hu HJ. 2007. Autumn moulting of the adults of yellow-bellied prinia, Prinia flaviventris. Chinese Journal of Zoology, 42(6): 28−33. (in Chinese)
    [13]
    Dixon A, Ross D, O'Malley SLC, Burke T. 1994. Paternal investment inversely related to degree of extra-pair paternity in the reed bunting. Nature, 371(6499): 698−700. doi: 10.1038/371698a0
    [14]
    Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 6(5): e19379. doi: 10.1371/journal.pone.0019379
    [15]
    Felsenstein J. 1993. PHYLIP (Phylogeny Inference Package), version 3.5 c.
    [16]
    Flanagan SP, Jones AG. 2019. The future of parentage analysis: from microsatellites to SNPs and beyond. Molecular Ecology, 28(3): 544−567. doi: 10.1111/mec.14988
    [17]
    Gibbs HL, Weatherhead PJ, Boag PT, White BN, Tabak LM, Hoysak DJ. 1990. Realized reproductive success of polygynous red-winged blackbirds revealed by DNA markers. Science, 250(4986): 1394−1397. doi: 10.1126/science.250.4986.1394
    [18]
    Gowaty PA. 1996. Battles of the sexes and origins of mono-gamy. In: Black JM. Partnerships in Birds: The Study of Monogamy. Oxford: Oxford University Press, 21–52.
    [19]
    Griffith SC, Owens IPF, Thuman KA. 2002. Extra pair paternity in birds: a review of interspecific variation and adaptive function. Molecular Ecology, 11(11): 2195−2212.
    [20]
    Hauser L, Baird M, Hilborn R, Seeb LW, Seeb JE. 2011. An empirical comparison of SNPs and microsatellites for parentage and kinship assignment in a wild sockeye salmon (Oncorhynchus nerka) population. Molecular Ecology Resources, 11(S1): 150−161.
    [21]
    Hoi-Leitner M, Hoi H, Romero-Pujante M, Valera F. 1999. Female extra-pair behaviour and environmental quality in the Serin (Serinus serinus): a test of the ‘constrained female hypothesis’. Proceedings of the Royal Society B: Biological Sciences, 266(1423): 1021−1026. doi: 10.1098/rspb.1999.0738
    [22]
    Hoye BJ, Buttemer WA. 2011. Inexplicable inefficiency of avian molt? Insights from an opportunistically breeding arid-zone species, Lichenostomus penicillatus. PLoS One, 6(2): e16230. doi: 10.1371/journal.pone.0016230
    [23]
    Huang K, Ritland K, Dunn DW, Qi X, Guo S, Li B. 2016. Estimating relatedness in the presence of null alleles. Genetics, 202(1): 247−260. doi: 10.1534/genetics.114.163956
    [24]
    Huang K, Mi R, Dunn DW, Wang T, Li B. 2018. Performing parentage analysis in the presence of inbreeding and null alleles. Genetics, 210(4): 1467−1481. doi: 10.1534/genetics.118.301592
    [25]
    Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16(5): 1099−1106. doi: 10.1111/j.1365-294X.2007.03089.x
    [26]
    Lack D. 1968. Ecological Adaptations for Breeding in Birds. Methuen & Co., London.
    [27]
    Macedo RH, Karubian J, Webster MS. 2008. Extrapair paternity and sexual selection in socially monogamous birds: are tropical birds different?. The Auk, 125(4): 769−777. doi: 10.1525/auk.2008.11008
    [28]
    Mainwaring MC, Hartley IR. 2013. The energetic costs of nest building in birds. Avian Biology Research, 6(1): 12−17. doi: 10.3184/175815512X13528994072997
    [29]
    Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. 2010. Robust relationship inference in genome-wide association studies. Bioinformatics, 26(22): 2867−2873. doi: 10.1093/bioinformatics/btq559
    [30]
    Marshall TC, Slate J, Kruuk LEB, Pemberton JM. 1998. Statistical confidence for likelihood‐based paternity inference in natural populations. Molecular Ecology, 7(5): 639−655. doi: 10.1046/j.1365-294x.1998.00374.x
    [31]
    Møller AP, Cuervo JJ. 2000. The evolution of paternity and paternal care in birds. Behavioral Ecology, 11(5): 472−485. doi: 10.1093/beheco/11.5.472
    [32]
    Møller AP, Cuervo JJ. 2003. Sexual selection, germline mutation rate and sperm competition. BMC Evolutionary Biology, 3: 6. doi: 10.1186/1471-2148-3-6
    [33]
    Morris GP, Grabowski PP, Borevitz JO. 2011. Genomic diversity in switchgrass (Panicum virgatum): from the continental scale to a dune landscape. Molecular Ecology, 20(23): 4938−4952. doi: 10.1111/j.1365-294X.2011.05335.x
    [34]
    Nei M, Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford: Oxford University Press.
    [35]
    Perlut NG, Kelly LM, Zalik NJ, Strong AM. 2012. Male savannah sparrows provide less parental care with increasing paternity loss. Northeastern Naturalist, 19(2): 335−344. doi: 10.1656/045.019.0214
    [36]
    Petrie M, Doums C, Møller AP. 1998. The degree of extra-pair paternity increases with genetic variability. Proceedings of the National Academy of Sciences of the United States of America, 95(16): 9390−9395. doi: 10.1073/pnas.95.16.9390
    [37]
    Petrie M, Kempenaers B. 1998. Extra-pair paternity in birds: explaining variation between species and populations. Trends in Ecology & Evolution, 13(2): 52−58.
    [38]
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3): 559−575. doi: 10.1086/519795
    [39]
    R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
    [40]
    Remeš V, Freckleton RP, Tökölyi J, Liker A, Székely T. 2015. The evolution of parental cooperation in birds. Proceedings of the National Academy of Sciences of the United States of America, 112(44): 13603−13608. doi: 10.1073/pnas.1512599112
    [41]
    Rohlf FJ, Sokal RR. 1981. Statistical Tables. 2nd ed. San Francisco, CA: W.H. Freeman.
    [42]
    Sæther BE. 1988. Pattern of covariation between life-history traits of European birds. Nature, 331(6157): 616−617. doi: 10.1038/331616a0
    [43]
    Sardell RJ, Keller LF, Arcese P, Bucher T, Reid JM. 2010. Comprehensive paternity assignment: genotype, spatial location and social status in song sparrows, Melospiza melodia. Molecular Ecology, 19(19): 4352−4364. doi: 10.1111/j.1365-294X.2010.04805.x
    [44]
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725−2729. doi: 10.1093/molbev/mst197
    [45]
    Trivers RL. 1972. Parental investment and sexual selection. In: Campbell B. Sexual Selection and the Descent of Man. Chicago: Aldine Press, 136–179.
    [46]
    Weinman LR, Solomon JW, Rubenstein DR. 2014. A comparison of SNP and microsatellite markers for analysis of parentage and kinship in a cooperatively breeding bird. Molecular Ecology Resources, 15(3): 502−511.
    [47]
    Westneat DF, Stewart IRK. 2003. Extra-pair paternity in birds: causes, correlates, and conflict. Annual Review of Ecology, Evolution, and Systematics, 34: 365−396. doi: 10.1146/annurev.ecolsys.34.011802.132439
    [48]
    Yang CC, Wang LW, Cheng SJ, Hsu YC, Liang W, Møller AP. 2014. Nest defenses and egg recognition of yellow-bellied prinia against cuckoo parasitism. Naturwissenschaften, 101(9): 727−734. doi: 10.1007/s00114-014-1209-8
  • ZR-2020-079_Supplementary materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (640) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return