Volume 41 Issue 3
May  2020
Turn off MathJax
Article Contents
Rong-Jun Ni, Yang Tian, Xin-Ye Dai, Lian-Sheng Zhao, Jin-Xue Wei, Jiang-Ning Zhou, Xiao-Hong Ma, Tao Li. Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory. Zoological Research, 2020, 41(3): 258-272. doi: 10.24272/j.issn.2095-8137.2020.034
Citation: Rong-Jun Ni, Yang Tian, Xin-Ye Dai, Lian-Sheng Zhao, Jin-Xue Wei, Jiang-Ning Zhou, Xiao-Hong Ma, Tao Li. Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory. Zoological Research, 2020, 41(3): 258-272. doi: 10.24272/j.issn.2095-8137.2020.034

Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory

doi: 10.24272/j.issn.2095-8137.2020.034
Funds:  This study was supported by the National Natural Science Foundation of China (81671344; 31500859), Major International (Regional) Joint Research Project of the National Natural Science Foundation of China (81920108018), 1.3.5 Project for Disciplines of Excellence, Special Foundation for Brain Research from the Science and Technology Program of Guangdong (2018B030334001), and West China Hospital of Sichuan University (ZY2016103; ZY2016203)
More Information
  • Corresponding author: E-mail: maxiaohong@scu.edu.cn
  • Received Date: 2019-11-01
  • Accepted Date: 2020-03-23
  • Available Online: 2020-03-23
  • Publish Date: 2020-05-18
  • Adult male tree shrews vigorously defend against intruding male conspecifics. However, the characteristics of social behavior have not been entirely explored in these males. In this study, male wild-type tree shrews (Tupaia belangeri chinensis) and C57BL/6J mice were first allowed to familiarize themselves with an open-field apparatus. The tree shrews exhibited a short duration of movement (moving) in the novel environment, whereas the mice exhibited a long duration of movement. In the 30 min social preference-avoidance test, target animals significantly decreased the time spent by the experimental tree shrews in the social interaction (SI) zone, whereas experimental male mice exhibited the opposite. In addition, experimental tree shrews displayed a significantly longer latency to enter the SI zone in the second 15 min session (target-present) than in the first 15 min session (target-absent), which was different from that found in mice. Distinct behavioral patterns in response to a conspecific male were also observed in male tree shrews and mice in the first, second, and third 5 min periods. Thus, social behaviors in tree shrews and mice appeared to be time dependent. In summary, our study provides results of a modified social preference-avoidance test designed for the assessment of social behavior in tree shrews. Our findings demonstrate the existence of social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics. The tree shrew may be a new animal model, which differs from mice, for the study of social avoidance and prosocial behaviors.

  • loading
  • [1]
    Anonymous]. 2001. Guidelines for the treatment of animals in behavioural research and teaching. Animal Behaviour, 61(1): 271−275. doi:  10.1006/anbe.2000.1652
    [2]
    Arakawa T, Tanave A, Ikeuchi S, Takahashi A, Kakihara S, Kimura S, Sugimoto H, Asada N, Shiroishi T, Tomihara K, Tsuchiya T, Koide T. 2014. A male-specific QTL for social interaction behavior in mice mapped with automated pattern detection by a hidden Markov model incorporated into newly developed freeware. Journal of Neuroscience Methods, 234: 127−134. doi:  10.1016/j.jneumeth.2014.04.012
    [3]
    Bales KL, Solomon M, Jacob S, Crawley JN, Silverman JL, Larke RH, Sahagun E, Puhger KR, Pride MC, Mendoza SP. 2014. Long-term exposure to intranasal oxytocin in a mouse autism model. Translational Psychiatry, 4(11): e480. doi:  10.1038/tp.2014.117
    [4]
    Bartal IBA, Decety J, Mason P. 2011. Empathy and pro-social behavior in rats. Science, 334(6061): 1427−1430. doi:  10.1126/science.1210789
    [5]
    Basu P, Masters B, Patel B, Urban O. 1993. Food safety and inspection service update on food safety of animals derived from biotechnology experiments. Journal of Animal Science, 71(S3): 41−42.
    [6]
    Bauman MD, Iosif AM, Ashwood P, Braunschweig D, Lee A, Schumann CM, Van De Water J, Amaral DG. 2013. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Translational Psychiatry, 3(7): e278. doi:  10.1038/tp.2013.47
    [7]
    Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ. 2006. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 311(5762): 864−868. doi:  10.1126/science.1120972
    [8]
    Brodkin ES, Hagemann A, Nemetski SM, Silver LM. 2004. Social approach-avoidance behavior of inbred mouse strains towards DBA/2 mice. Brain Research, 1002(1–2): 151−157.
    [9]
    Buijs RM, Ruiz MAG, Hernández RM, Cortés BR. 2019. The suprachiasmatic nucleus; a responsive clock regulating homeostasis by daily changing the setpoints of physiological parameters. Autonomic Neuroscience, 218: 43−50. doi:  10.1016/j.autneu.2019.02.001
    [10]
    Deboer T, Vansteensel MJ, Détári L, Meijer JH. 2003. Sleep states alter activity of suprachiasmatic nucleus neurons. Nature Neuroscience, 6(10): 1086−1090. doi:  10.1038/nn1122
    [11]
    Ey E, Yang M, Katz AM, Woldeyohannes L, Silverman JL, Leblond CS, Faure P, Torquet N, Le Sourd AM, Bourgeron T, Crawley JN. 2012. Absence of deficits in social behaviors and ultrasonic vocalizations in later generations of mice lacking neuroligin4. Genes, Brain and Behavior, 11(8): 928−941.
    [12]
    Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, He J, Hou HL, Hu L, Hu XT, Jiang XT, Lai R, Lang YS, Liang B, Liao SG, Mu D, Ma YY, Niu YY, Sun XQ, Xia JQ, Xiao J, Xiong ZQ, Xu L, Yang L, Zhang Y, Zhao W, Zhao XD, Zheng YT, Zhou JM, Zhu YB, Zhang GJ, Wang J, Yao YG. 2013. Genome of the Chinese tree shrew. Nature Communications, 4: 1426. doi:  10.1038/ncomms2416
    [13]
    Fan Y, Ye MS, Zhang JY, Xu L, Yu DD, Gu TL, Yao YL, Chen JQ, Lv LB, Zheng P, Wu DD, Zhang GJ, Yao YG. 2019. Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zoological Research, 40(6): 506−521. doi:  10.24272/j.issn.2095-8137.2019.063
    [14]
    Fang H, Sun YJ, Lv YH, Ni RJ, Shu YM, Feng XY, Wang Y, Shan QH, Zu YN, Zhou JN. 2016. High activity of the stress promoter contributes to susceptibility to stress in the tree shrew. Scientific Reports, 6: 24905. doi:  10.1038/srep24905
    [15]
    Farrell MR, Holland FH, Shansky RM, Brenhouse HC. 2016. Sex-specific effects of early life stress on social interaction and prefrontal cortex dendritic morphology in young rats. Behavioural Brain Research, 310: 119−125. doi:  10.1016/j.bbr.2016.05.009
    [16]
    Fischer HD, Heinzeller T, Raab A. 1985. Gonadal response to psychosocial stress in male tree shrews (Tupaia belangeri) morphometry of testis, epididymis and prostate. Andrologia, 17(3): 262−275.
    [17]
    Fuchs E, Schumacher M. 1990. Psychosocial stress affects pineal function in the tree shrew (Tupaia belangeri). Physiology & Behavior, 47(4): 713−717.
    [18]
    Fuchs E, Jöhren O, Flügge G. 1993. Psychosocial conflict in the tree shrew: effects on sympathoadrenal activity and blood pressure. Psychoneuroendocrinology, 18(8): 557−565. doi:  10.1016/0306-4530(93)90033-H
    [19]
    Fuchs E, Uno H, Flugge G. 1995. Chronic psychosocial stress induces morphological alterations in hippocampal pyramidal neurons of the tree shrew. Brain Research, 673(2): 275−282. doi:  10.1016/0006-8993(94)01424-G
    [20]
    Fuchs E. 2005. Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectrums, 10(3): 182−190. doi:  10.1017/S1092852900010038
    [21]
    Glass JD, Grossman GH, Farnbauch L, Dinardo L. 2003. Midbrain raphe modulation of nonphotic circadian clock resetting and 5-HT release in the mammalian suprachiasmatic nucleus. Journal of Neuroscience, 23(20): 7451−7460. doi:  10.1523/JNEUROSCI.23-20-07451.2003
    [22]
    Golden SA, Covington III HE, Berton O, Russo SJ. 2011. A standardized protocol for repeated social defeat stress in mice. Nature Protocols, 6(8): 1183−1191. doi:  10.1038/nprot.2011.361
    [23]
    Goodson JL, Lindberg L, Johnson P. 2004. Effects of central vasotocin and mesotocin manipulations on social behavior in male and female zebra finches. Hormones and Behavior, 45(2): 136−143. doi:  10.1016/j.yhbeh.2003.08.006
    [24]
    Green J, Collins C, Kyzar EJ, Pham M, Roth A, Gaikwad S, Cachat J, Stewart AM, Landsman S, Grieco F, Tegelenbosch R, Noldus LPJJ, Kalueff AV. 2012. Automated high-throughput neurophenotyping of zebrafish social behavior. Journal of Neuroscience Methods, 210(2): 266−271. doi:  10.1016/j.jneumeth.2012.07.017
    [25]
    Guillen J. 2017. Laboratory Animals: Regulations and Recommendations for the Care and Use of Animals in Research. 2nd ed. London: Academic Press.
    [26]
    Haller J, Bakos N. 2002. Stress-induced social avoidance: a new model of stress-induced anxiety?. Physiology & Behavior, 77(2–3): 327−332.
    [27]
    Hefner K, Cameron HA, Karlsson RM, Holmes A. 2007. Short-term and long-term effects of postnatal exposure to an adult male in C57BL/6J mice. Behavioural Brain Research, 182(2): 344−348. doi:  10.1016/j.bbr.2007.03.032
    [28]
    Henriques-Alves AM, Queiroz CM. 2016. Ethological evaluation of the effects of social defeat stress in mice: beyond the social interaction ratio. Frontiers in Behavioral Neuroscience, 9: 364.
    [29]
    Hery M, Dusticier G, Faudon M, Barrit MC, Héry F. 1981. Kinetic study of serotonin metabolism in the suprachiasmatic nucleus of the rat: neuroendocrine incidence (author's transl)]. Journal de Physiologie, 77(2–3): 497−500.
    [30]
    Holst DV. 1977. Social stress in tree-shrews: problems, results, and goals. Journal of Comparative Physiology, 120: 71−86. doi:  10.1007/BF00617538
    [31]
    Houwing DJ, Heijkoop R, Olivier JDA, Snoeren EMS. 2019. Perinatal fluoxetine exposure changes social and stress-coping behavior in adult rats housed in a seminatural environment. Neuropharmacology, 151: 84−97. doi:  10.1016/j.neuropharm.2019.03.037
    [32]
    Huang ZH, Ni RJ, Luo PH, Zhou JN. 2020. Distribution of tyrosine-hydroxylase-immunoreactive neurons in the hypothalamus of tree shrews. The Journal of Comparative Neurology, 528(6): 935−952. doi:  10.1002/cne.24803
    [33]
    Hubrecht R, Kirkwood J. 2010. The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals. 8th ed. Ames: Universities Federation for Animal Welfare, 262–275.
    [34]
    Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR. 2011. Assessment of social interaction behaviors. Journal of Visualized Experiments, (48): 2473.
    [35]
    Kawamichi T, Kawamichi M. 1979. Spatial organization and territory of three shrews (Tupaia glis). Animal Behaviour, 27: 381−393. doi:  10.1016/0003-3472(79)90173-8
    [36]
    Khani A, Rainer G. 2012. Recognition memory in tree shrew (Tupaia belangeri) after repeated familiarization sessions. Behavioural Processes, 90(3): 364−371. doi:  10.1016/j.beproc.2012.03.019
    [37]
    Li AF, Jing DQ, Dellarco DV, Hall BS, Yang RR, Heilberg RT, Huang CC, Liston C, Casey BJ, Lee FS. 2019. Role of BDNF in the development of an OFC-amygdala circuit regulating sociability in mouse and human. Molecular Psychiatry. doi:  10.1038/s41380-019-0422-4.
    [38]
    Lopes PC. 2014. When is it socially acceptable to feel sick?. Proceedings of the Royal Society B: Biological Sciences, 281(1788): 20140218. doi:  10.1098/rspb.2014.0218
    [39]
    Lukas M, Toth I, Reber SO, Slattery DA, Veenema AH, Neumann ID. 2011. The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacology, 36(11): 2159−2168. doi:  10.1038/npp.2011.95
    [40]
    Magariños AM, Mcewen BS, Flügge G, Fuchs E. 1996. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. Journal of Neuroscience, 16(10): 3534−3540. doi:  10.1523/JNEUROSCI.16-10-03534.1996
    [41]
    Meng FT, Zhao J, Fang H, Liu YJ. 2015. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice. Stress, 18(4): 419−426. doi:  10.3109/10253890.2015.1040986
    [42]
    Meng XL, Shen F, Li CL, Li YH, Wang XW. 2016. Depression-like behaviors in tree shrews and comparison of the effects of treatment with fluoxetine and carbetocin. Pharmacology Biochemistry and Behavior, 145: 1−8. doi:  10.1016/j.pbb.2016.03.006
    [43]
    Mikics E, Tóth M, Varjú P, Gereben B, Liposits Z, Ashaber M, Halász J, Barna I, Farkas I, Haller J. 2008. Lasting changes in social behavior and amygdala function following traumatic experience induced by a single series of foot-shocks. Psychoneuroendocrinology, 33(9): 1198−1210. doi:  10.1016/j.psyneuen.2008.06.006
    [44]
    Moga MM, Moore RY. 1997. Organization of neural inputs to the suprachiasmatic nucleus in the rat. The Journal of Comparative Neurology, 389(3): 508−534. doi:  10.1002/(SICI)1096-9861(19971222)389:3<508::AID-CNE11>3.0.CO;2-H
    [45]
    Monclús R, Saavedra I, de Miguel J. 2014. Context-dependent responses to neighbours and strangers in wild European rabbits (Oryctolagus cuniculus). Behavioural Processes, 106: 17−21. doi:  10.1016/j.beproc.2014.04.004
    [46]
    Nair J, Topka M, Khani A, Isenschmid M, Rainer G. 2014. Tree shrews (Tupaia belangeri) exhibit novelty preference in the novel location memory task with 24-h retention periods. Frontiers in Psychology, 5: 303.
    [47]
    Ni RJ, Huang ZH, Luo PH, Ma XH, Li T, Zhou JN. 2018. The tree shrew cerebellum atlas: systematic nomenclature, neurochemical characterization, and afferent projections. The Journal of Comparative Neurology, 526(17): 2744−2775. doi:  10.1002/cne.24526
    [48]
    Ni RJ, Wang J, Shu YM, Xu L, Zhou JN. 2020. Mapping of c-Fos expression in male tree shrew forebrain. Neuroscience Letters, 714: 134603. doi:  10.1016/j.neulet.2019.134603
    [49]
    Ogden BE, Pang WY, Agui T, Lee BH. 2016. Laboratory animal laws, regulations, guidelines and standards in China Mainland, Japan, and Korea. ILAR Journal, 57(3): 301−311.
    [50]
    Parésys L, Hoffmann K, Froger N, Bianchi M, Villey I, Baulieu EE, Fuchs E. 2016. Effects of the synthetic neurosteroid: 3β-methoxypregnenolone (MAP4343) on behavioral and physiological alterations provoked by chronic psychosocial stress in tree shrews. International Journal of Neuropsychopharmacology, 19(4): pyv119. doi:  10.1093/ijnp/pyv119
    [51]
    Pfaff D, Barbas H. 2019. Mechanisms for the approach/avoidance decision applied to autism. Trends in Neurosciences, 42(7): 448−457. doi:  10.1016/j.tins.2019.05.002
    [52]
    Pryce CR, Fuchs E. 2017. Chronic psychosocial stressors in adulthood: studies in mice, rats and tree shrews. Neurobiology of Stress, 6: 94−103. doi:  10.1016/j.ynstr.2016.10.001
    [53]
    Raab A, Storz H. 1976. A long term study on the impact of sociopsychic stress in tree-shrews (Tupaia belangeri) on central and peripheral tyrosine hydroxylase activity. Journal of Comparative Physiology, 108(2): 115−131. doi:  10.1007/BF02169044
    [54]
    Raymond JS, Wilson BB, Tan O, Gururajan A, Bowen MT. 2019. Acute alcohol exposure dose-dependently alleviates social avoidance in adolescent mice and inhibits social investigation in adult mice. Psychopharmacology, 236(12): 3625−3639. doi:  10.1007/s00213-019-05335-8
    [55]
    Schehka S, Esser KH, Zimmermann E. 2007. Acoustical expression of arousal in conflict situations in tree shrews (Tupaia belangeri). Journal of Comparative Physiology A, 193(8): 845−852. doi:  10.1007/s00359-007-0236-8
    [56]
    Seibenhener ML, Wooten MC. 2015. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. Journal of Visualized Experiments, (96): e52434.
    [57]
    Taugner R, Forssmann WG, Ganten D, Schiller A. 1980. Studies on the juxtaglomerular apparatus VI. Sympathetic innervation, catecholamines and the renin-angiotensin-system in rats and tree-shrews (Tupaia belangeri). Cell and Tissue Research, 212(3): 375−382.
    [58]
    Toth I, Neumann ID. 2013. Animal models of social avoidance and social fear. Cell and Tissue Research, 354(1): 107−118. doi:  10.1007/s00441-013-1636-4
    [59]
    van Dongen WFD. 2008. Mate guarding and territorial aggression vary with breeding synchrony in golden whistlers (Pachycephala pectoralis). Naturwissenschaften, 95(6): 537−545. doi:  10.1007/s00114-008-0356-1
    [60]
    Vandenbergh JG. 1963. Feeding, activity and social behavior of the tree shrew, Tupaia glis, in a large outdoor enclosure. Folia Primatologica, 1(3–4): 199−207.
    [61]
    Wang J, Zhou QX, Tian M, Yang YX, Xu L. 2011. Tree shrew models: a chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory. Zoological Research, 32(1): 24−30.
    [62]
    Wang J, Chai AP, Zhou QX, Lv LB, Wang LP, Yang YX, Xu L. 2013. Chronic clomipramine treatment reverses core symptom of depression in subordinate tree shrews. PLoS One, 8(12): e80980. doi:  10.1371/journal.pone.0080980
    [63]
    Xiao J, Liu R, Chen CS. 2017. Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model. Zoological Research, 38(3): 127−137. doi:  10.24272/j.issn.2095-8137.2017.033
    [64]
    Xu HF, Liu L, Tian YY, Wang J, Li J, Zheng JQ, Zhao HF, He M, Xu TL, Duan SM, Xu H. 2019. A disinhibitory microcircuit mediates conditioned social fear in the prefrontal cortex. Neuron, 102(3): 668−682. doi:  10.1016/j.neuron.2019.02.026
    [65]
    Yao YG. 2017. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 38(3): 118−126. doi:  10.24272/j.issn.2095-8137.2017.032
    [66]
    Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. 2006. Afferents to the orexin neurons of the rat brain. The Journal of Comparative Neurology, 494(5): 845−861. doi:  10.1002/cne.20859
    [67]
    Zheng YT, Yao YG, Xu L. 2014. Basic Biology and Disease Models of Tree Shrews. Kunming, Yunnan: Science and Technology Press. (in Chinese)
  • Relative Articles

    [1] Long-Wu Wang, Guo Zhong, Gang-Bin He, Yu-Han Zhang, Wei Liang. Egg laying behavior of common cuckoos (Cuculus canorus): Data based on field video-recordings. Zoological Research, 2020, 41(4): 458-464.  doi: 10.24272/j.issn.2095-8137.2020.021
    [2] You-Ji Zhang, Yi-Xin Chen, Hao-Chun Chen, Yuan Chen, Hui Yao, Wan-Ji Yang, Xiang-Dong Ruan, Zuo-Fu Xiang. Social functions of relaxed open-mouth display in golden snub-nosed monkeys (Rhinopithecus roxellana). Zoological Research, 2019, 40(2): 113-120.  doi: 10.24272/j.issn.2095-8137.2018.043
    [3] Kaitlin R. Wright, Jessica A. Mayhew, Lori K. Sheeran, Jake A. Funkhouser, Ronald. S. Wagner, Li-Xing Sun, Jin-Hua Li. Playing it cool: Characterizing social play, bout termination, and candidate play signals of juvenile and infant Tibetan macaques (Macaca thibetana) . Zoological Research, 2018, 39(4): 272-283.  doi: 10.24272/j.issn.2095-8137.2018.048
    [4] Yan-Hong Xiao, Lei Wang, Joseph R. Hoyt, Ting-Lei Jiang, Ai-Qing Lin, Jiang Feng. Stereotypy and variability of social calls among clustering female big-footed myotis (Myotis macrodactylus). Zoological Research, 2018, 39(2): 114-122.  doi: 10.24272/j.issn.2095-8137.2018.026
    [5] Zhen-Hua Guan, Chang-Yong Ma, Han-Lan Fei, Bei Huang, Wen-He Ning, Qing-Yong Ni, Xue-Long Jiang, Peng-Fei Fan. Ecology and social system of northern gibbons living in cold seasonal forests. Zoological Research, 2018, 39(4): 255-265.  doi: 10.24272/j.issn.2095-8137.2018.045
    [6] Bo ZHAN, Hong-Yuan MA, Jian-Li WANG, Chao-Bao LIU. Sex differences in morphine-induced behavioral sensitization and social behaviors in ICR mice. Zoological Research, 2015, 36(2): 103-108.
    [7] Ding CUI, Yuan ZHOU. Stress-relevant social behaviors of middle-class male cynomolgus monkeys (Macaca fascicularis). Zoological Research, 2015, 36(6): 337-341.  doi: 10.13918/j.issn.2095-8137.2015.6.337
    [8] Ying-Chun LI, Feng LIU, Xiao-Yang HE, Chi MA, Jun SUN, Dong-Hui LI, Wen XIAO, Liang-Wei CUI. Social organization of Shortridge's capped langur (Trachypithecus shortridgei) at the Dulongjiang Valley in Yunnan, China. Zoological Research, 2015, 36(3): 152-160.
    [9] Liang-Wei CUI, Qing-Lei SUN, Bao-Guo LI. Dominance hierarchy and social relationships in a group of captive black-and-white snub-nosed monkeys (Rhinopithecus bieti). Zoological Research, 2014, 35(3): 204-213.  doi: 10.11813/j.issn.0254-5853.2014.3.204
    [10] Jian-Li WANG, Bei WANG, Wen CHEN. Differences in cocaine-induced place preference persistence, locomotion and social behaviors between C57BL/6J and BALB/cJ mice. Zoological Research, 2014, 35(5): 426-435.  doi: 10.13918/j.issn.2095-8137.2014.5.426
    [11] Peng ZHANG. Social network analysis of animal behavioral ecology: a cross-discipline approach. Zoological Research, 2013, 34(6): 651-658.  doi: 10.11813/j.issn.0254-5853.2013.6.0651
    [12] Dong-Dong QIN, Joshua Dominic Rizak, Xiao-Li FENG, Xun-Xun CHU, Shang-Chuan YANG, Chun-Lu LI, Long-Bao LV, Yuan-Ye MA, Xin-Tian HU. Social rank and cortisol among female rhesus macaques (Macaca mulatta). Zoological Research, 2013, 34(E2): 13342-E.  doi: 10.3724/SP.J.1141.2013.E02E42
    [13] WANG Jing, ZHOU Qi-Xin, LÜ Long-Bao, XU Lin, YANG Yue-Xiong. A depression model of social defeat etiology using tree shrews. Zoological Research, 2012, 33(1): 92-98.  doi: 10.3724/SP.J.1141.2012.01092
    [14] WANG Jing, ZHOU Qi-Xin, TIAN Men, YANG Yue-Xiong, XU Lin. Tree shrew models: A chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory. Zoological Research, 2011, 32(1): 24-30.  doi: 10.3724/SP.J.1141.2011.01024
    [15] DAI Qiang, ZHANG Zheng-Wang, QIU Fu-Cai, GUO Jian-Rong. Social Hierarchy of the Brown Eared Pheasants Crossoptilon mantchuricum in Captivity During Winter. Zoological Research, 2001, 22(5): 361-366.
    [16] LI Dong-feng, LI Jie. The Hormonal Regulation of Vocal Behavior in Songbirds. Zoological Research, 1999, 20(1): 62-66.
    [17] ZHAO Qi-kun. Ecological Selection of Primate Social Behavior. Zoological Research, 1999, 20(2): 137-145.
    [18] Edmund D.Brodie, Jr, Ronald A.Nussbaum, YANG Da-tong. Antipredator Behavior of Chinese Salamanders (Salamandridae). Zoological Research, 1990, 11(1): 7-16.
    [19] Fang congyi, Liu cheng, Qi huixin, Zheng jianbiao, Chen ling, Xu huiming, Xiang zhongming, Song benbo. The hippocampal formation and learning and memory of dark avoidance behavior in rats IV. effects of colchicine microinjected into various parts of hippocampal formation. Zoological Research, 1988, 9(1): 79-86.
    [20] HUANG Wei-liang, RAO Qi-zhen, LU Li-mei. The Action of the Social Behaviour of the Initial Colony of Two Termites on Oviposition,Egg Hatching and Moulting. Zoological Research, 1985, 6(zk): 109-112.
  • ZR-2019-178-Supplement_Figur S1.doc
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (1997) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return