留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular evidence on the phylogenetic position of tree shrews

Ling XU Yu FAN Xue-Long JIANG Yong-Gang YAO

Ling XU, Yu FAN, Xue-Long JIANG, Yong-Gang YAO. Molecular evidence on the phylogenetic position of tree shrews. Zoological Research, 2013, 34(2): 70-76. doi: 10.3724/SP.J.1141.2013.02070
Citation: Ling XU, Yu FAN, Xue-Long JIANG, Yong-Gang YAO. Molecular evidence on the phylogenetic position of tree shrews. Zoological Research, 2013, 34(2): 70-76. doi: 10.3724/SP.J.1141.2013.02070

树鼩进化分类地位的分子证据

doi: 10.3724/SP.J.1141.2013.02070
基金项目: 中国科学院基础前沿研究专项项目(KSCX2-EW-J-23);863 课题(2012AA021801);中国科学院知识创新工程重要方向项目(KSCX2-EW-R-11)
详细信息
  • 中图分类号: Q959;Q523

Molecular evidence on the phylogenetic position of tree shrews

  • 摘要: 树鼩隶属攀鼩目, 广泛分布于东南亚、南亚和中国南部等地区。由于其独特的特点, 如体型小、脑-体重比例高、生殖周期短、寿命短和饲养成本低等, 在生物医学研究中被认为是可望替代灵长类动物的新型实验动物。然而, 关于树鼩与灵长类动物的亲缘关系一直存在争议。明确树鼩的分类地位是创建实验动物的重要研究基础。该文介绍了近年来关于树鼩分类地位探讨的分子证据。在现有的研究中, 大部分核DNA 序列研究, 包括近期树鼩全基因组序列分析, 都支持树鼩是灵长动物的近缘旁系群, 然而绝大部分基于线粒体DNA 序列的研究却显示树鼩与啮齿动物的亲缘关系更为接近。这样的分歧主要是由于线粒体序列和核基因数据的差异以及不同的算法导致。综合现有不同DNA 数据的研究结果, 作者认为树鼩作为灵长类的近亲这一结论应该成为共识。
  • [1] Adkins RM, Honeycutt RL. 1991. Molecular phylogeny of the superorder Archonta. Proc Natl Acad Sci USA, 88(22): 10317-10321.
    [2] Allard MW, McNiff BE, Miyamoto MM. 1996. Support for interordinal eutherian relationships with an emphasis on primates and their Archontan relatives. Mol Phyl Evol, 5(1): 78-88.
    [3] Amrine-Madsen H, Koepfli KP, Wayne RK, Springer MS. 2003. A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. Mol Phyl Evol, 28(2): 225-240.
    [4] Arnason U, Gullberg A, Janke A. 1999. The mitochondrial DNA molecule of the aardvark, Orycteropus afer, and the position of the Tubulidentata in the eutherian tree. Proc R Soc Lond B, 266(1417): 339-345.
    [5] Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A, Nilsson M, Short RV, Xu XF, Janke A. 2002. Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA, 99(12): 8151-8156.
    [6] Bailey WJ, Slightom JL, Goodman M. 1992. Rejection of the 'flying primate' hypothesis by phylogenetic evidence from the epsilon-globin gene. Science, 256(5053): 86-89.
    [7] Butler PM. 1972. The Problem of Insectivore Classification. Edinburgh: Oliver & Boyd.
    [8] Carlsson A. 1922. über die tupaiidae und ihre beziehungen zu den insectivora und den prosimiae. Acta Zoologica, 3(2-3): 227-270.
    [9] Corbett GB, Hill JE. 1992. The Mammals of the Indomalay Region: A Systematic Review. Oxford: Natural History Museum Publications; Oxford University Press.
    [10] Davis DD. 1938. Notes on the anatomy of the treeshrew dendrogale// Davis DD. Chicago: Field Museum of Natural History: 383-404
    [11] Derchia AM, Gissi C, Pesole G, Saccone C, Arnason U. 1996. The guinea-pig is not a rodent. Nature, 381(6538): 597-600.
    [12] Fan Y, Huang Z-Y, Cao C-C, Chen C-S, Chen Y-X, Fan D-D, He J, Hou H-L, Hu L, Hu X-T, Jiang X-T, Lai R, Lang Y-S, Liang B, Liao S-G, Mu D, Ma Y-Y, Niu Y-Y, Sun X-Q, Xia J-Q, Xiao J, Xiong Z-Q, Xu L, Yang L, Zhang Y, Zhao W, Zhao X-D, Zheng Y-T, Zhou J-M, Zhu Y-B, Zhang G-J, Wang J, Yao Y-G. 2013. Genome of the Chinese tree shrew. Nat Commun, 4: 1426 (DOI:  10.1038/ncomms2416).
    [13] Gray JE. 1825. An outline of an attempt at the disposition of Mammalia into tribes and families, with a list of the genera apparently appertaining to each tribe. Ann Phil, 10: 337-343.
    [14] Hallström BM, Janke A. 2010. Mammalian evolution may not be strictly bifurcating. Mol Biol Evol, 27(12): 2804-2816.
    [15] Helgen KM. 2005. Order scandentia// Wilson DE, Reeder DM. Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd ed. Maryland: Johns Hopkins University Press: 104-109.
    [16] Hudelot C, Gowri-Shankar V, Jow H, Rattray M, Higgs PG. 2003. RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences. Mol Phyl Evol, 28(2): 241-252.
    [17] Jane?ka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ. 2007. Molecular and genomic data identify the closest living relative of primates. Science, 318(5158): 792-794.
    [18] Jiao JL, Liu RW, Chen LL, LI B, He BL, Zheng H, Shen PQ. 2009. The development and use of tree shrew resource and its standards research-the strategic discussion for laboratory animal resource development in China. Chin J Comp Med, 19(7): 73-78. [角建林, 刘汝文, 陈丽玲, 李波, 何保丽, 郑红, 沈培清. 2009. 树鼩资源的开发利用与标准化研究――我国实验动物资源建设发展战略探讨. 中国比较医学杂志, 19(7): 73-78.]
    [19] Jow H, Hudelot C, Rattray M, Higgs PG. 2002. Bayesian Phylogenetics Using an RNA Substitution Model Applied to Early Mammalian Evolution. Mol Biol Evol, 19(9): 1591-1601.
    [20] Killian JK, Buckley TR, Stewart N, Munday BL, Jirtle RL. 2001. Marsupials and Eutherians reunited: genetic evidence for the Theria hypothesis of mammalian evolution. Mamm Genome, 12(7): 513-517.
    [21] Krettek A, Gullberg A, Arnason U. 1995. Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog, Erinaceus europaeus, and the phylogenetic position of the Lipotyphla. J Mol Evol, 41(6): 952-957.
    [22] Kriegs JO, Churakov G, Jurka J, Brosius J, Schmitz J. 2007. Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends Genet, 23(4): 158-161.
    [23] Le Gros CWE. 1924. On the brain of the tree-shrew (Tupaia minor). Proc Zool Soc London, 94(4): 1053-1074.
    [24] Lin YH, Waddell PJ, Penny D. 2002. Pika and vole mitochondrial genomes increase support for both rodent monophyly and glires. Gene, 294(1-2): 119-129.
    [25] Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, Kheradpour P, Ernst J, Jordan G, Mauceli E, Ward LD, Lowe CB, Holloway AK, Clamp M, et al. 2011. A high-resolution map of human evolutionary constraint using 29 mammals. Nature, 478(7370): 476-482.
    [26] Liu FGR, Miyamoto MM, Freire NP, Ong PQ, Tennant MR, Young TS, Gugel KF. 2001. Molecular and morphological supertrees for eutherien (placental) mammals. Science, 291 (5509): 1786-1789.
    [27] Luckett WP. 1980. The Suggested Evolutionary Relationships and Classification of Tree Shrews. New York & London: Plenum Press.
    [28] Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW, Adkins R, Amrine HM, Stanhope MJ, de Jong WW, Springer MS. 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature, 409(6820): 610-614.
    [29] Meredith RW, Jane?ka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Sim?o TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ. 2011. Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science, 334(6055): 521-524.
    [30] Miyamoto MM. 1996. A congruence study of molecular and morphological data for Eutherian mammals. Mol Phyl Evol, 6(3): 373-390.
    [31] Müller S, Stanyon R, O’Brien PCM, Ferguson-Smith MA, Plesker R, Wienberg J. 1999. Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma, 108(6): 393-400.
    [32] Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS. 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294(5550): 2348-2351.
    [33] Nie WH, Fu BY, O'Brien PCM, Wang JH, Su WT, Tanomtong A, Volobouev V, Ferguson-Smith MA, Yang FT. 2008. Flying lemurs-The 'flying tree shrews'? Molecular cytogenetic evidence for a Scandentia-Dermoptera sister clade. BMC Biology, 6(1): 18.
    [34] Nishihara H, Terai Y, Okada N. 2002. Characterization of novel Alu- and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Mol Biol Evol, 19(11): 1964-1972.
    [35] Novacek MJ. 1992. Mammalian Phylogeny-Shaking the Tree. Nature, 356(6365): 121-125.
    [36] Olson LE, Sargis EJ, Martin RD. 2004. Phylogenetic relationships among treeshrews (Scandentia): A review and critique of the morphological evidence. J Mamm Evol, 11(1): 49-71.
    [37] Olson LE, Sargis EJ, Martin RD. 2005. Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Mol Phyl Evol, 35(3): 656-673.
    [38] Peng YZ, Ye ZZ, Zou RJ, Wang YX, Tian BP, Ma YY, Shi LM. 1991. Biology of Chinese Tree Shrews (Tupaia Belangeri Chinensis). Kunming: Yunnan Science and Technology Press. [彭燕章, 叶智章, 邹如金, 王应祥, 田保平, 马原野, 施立明. 1991. 树鼩生物学. 昆明: 云南科技出版社.]
    [39] Porter CA, Goodman M, Stanhope MJ. 1996. Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene. Mol Phyl Evol, 5(1): 89-101.
    [40] Previc FH. 2009. The Dopaminergic Mind in Human Evolution and History. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, S?o Paulo, Delhi: Cambridge University Press.
    [41] Rasmussen AS, Janke A, Arnason U. 1998. The mitochondrial DNA molecule of the hagfish (Myxine glutinosa) and vertebrate phylogeny. J Mol Evol, 46(4): 382-388.
    [42] Sargis EJ. 2004. New views on tree shrews: The role of Tupaiids in primate supraordinal relationships. Evolutionary Anthropology: Issues, News Rev, 13(2): 56-66.
    [43] Schmitz J, Ohme M, Zischler H. 2000. The complete mitochondrial genome of Tupaia belangeri and the phylogenetic affiliation of Scandentia to other eutherian orders. Mol Biol Evol, 17(9): 1334-1343.
    [44] Shen PQ, Zheng H, Liu RW, Chen LL, Li B, He BL, Li JT, Ben KL, Cao YM, Jiao JL. 2011. Progress and prospect in research on laboratory tree shrew in China. Zool Res, 32(1): 109-114. [沈培清, 郑红, 刘汝文, 陈丽玲, 李波, 何保丽, 李进涛, 贲昆龙, 曹筱梅, 角建林. 2011. 中国树鼩实验动物化研究进展和展望. 动物学研究, 32(1): 109-114.]
    [45] Shoshani J, Groves CP, Simons EL, Gunnell GF. 1996. Primate phylogeny: morphological vs molecular results. Mol Phyl Evol, 5(1): 102-154.
    [46] Simpson GG. 1945. The principles of classification and a classification of Mammals. Bull Amer Mus Nat Hist, 85: 1-350.
    [47] Song S, Liu L, Edwards SV, Wu S. 2012. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci USA, 109(37): 14942-14947.
    [48] Waddell PJ, Shelley S. 2003. Evaluating placental inter-ordinal phylogenies with novel sequences including RAG1, gamma-fibrinogen, ND6, and mt-tRNA, plus MCMC-driven nucleotide, amino acid, and codon models. Mol Phylogenet Evol, 28(2): 197-224.
    [49] Wang YX. 1987. Taxonomic research on Burma-Chinese tree shrew, Tupaia belangeri (Wagner), from Southern China. Zool Res, 8(3): 213-230. [王应祥. 1987. 中国树鼩的分类研究. 动物学研究, 8(3): 213-230.]
    [50] Xu L, Chen S-Y, Nie W-H, Jiang X-L, Yao Y-G. 2012. Evaluating the phylogenetic position of Chinese tree shrew (Tupaia belangeri chinensis) based on complete mitochondrial genome: implication for using tree shrew as an alternative experimental animal to primates in biomedical research. J Genet Genomics, 39(3): 131-137.
    [51] Xu L, Zhang Y, Liang B, Lü L-B, Chen C-S, Chen Y-B, Zhou J-M, Yao Y-G. 2013. The tree shrew under the spot light: emerging models of human diseases. Zool Res, 34(2): 59-69. [徐林, 张云, 梁斌, 吕龙宝, 陈策实, 陈勇彬, 周巨民, 姚永刚. 2013. 树鼩实验动物和人类疾病的树鼩模型研究概述. 动物学研究, 34(2):59-69. ]
    [52] Zardoya R, Meyer A. 1997. The complete DNA sequence of the mitochondrial genome of a “living fossil”, the coelacanth (Latimeria chalumnae). Genetics, 146(3): 995-1010.
    [53] Zeller UA. 1986. Ontogeny and cranial morphology of the tympanic region of the Tupaiidae, with special reference to Ptilocercus. Folia Primatol (Basel), 47(2-3): 61-80.
  • [1] Shu Wei, Hai-Rong Hua, Qian-Quan Chen, Ying Zhang, Fei Chen, Shu-Qing Li, Fan Li, Jia-Li Li.  Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.013
    [2] Jian-Ping LI, Yun LIAO, Ying ZHANG, Jing-Jing WANG, Li-Chun WANG, Kai FENG, Qi-Han LI, Long-Ding LIU.  Experimental infection of tree shrews(Tupaia belangeri) with Coxsackie virus A16, Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.6.485
    [3] Gui LI, Ren LAI, Gang DUAN, Long-Bao LYU, Zhi-Ye ZHANG, Huang LIU, Xun XIANG.  Isolation and identification of symbiotic bacteria from the skin, mouth, and rectum of wild and captive tree shrews, Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.6.492
    [4] Xiao-Yun WU, Yun-Hai LI, Qing CHANG, Lin-Qiang ZHANG, Sha-Sha LIAO, Bin LIANG.  Streptozotocin induction of type 2 diabetes in tree shrew, Zoological Research. doi: 10.3724/SP.J.1141.2013.02108
    [5] ZHANG Yuan-Xu, PING Shu-Huang, YANG Shi-Hua.  Morphological characteristics and cryodamage of Chinese tree shrew (Tupaia belangeri chinensis) sperm, Zoological Research. doi: 10.3724/SP.J.1141.2012.01029
    [6] LI Sheng-An, LEE Wen-Hui, ZHANG Yun.  Two bacterial infection models in tree shrew for evaluating the efficacy of antimicrobial agents, Zoological Research. doi: 10.3724/SP.J.1141.2012.01001
    [7] SUN Yong-Mei, YANG Jian-Zhen, SUN Hua-Ying, MA Yuan-Ye, WANG Jian-Hong.  Establishment of tree shrew chronic morphine dependent model, Zoological Research. doi: 10.3724/SP.J.1141.2012.01014
    [8] WANG Jing, ZHOU Qi-Xin, TIAN Men, YANG Yue-Xiong, XU Lin.  Tree shrew models: A chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory, Zoological Research. doi: 10.3724/SP.J.1141.2011.01024
    [9] MA Xu-Tong, LI Fu-Lin, JIANG Hong-Jun, LI Wen-Hui, ZHANG Yun, DU Ting-Yi.  Detection and comparison of physiological indexes in the wild and laboratory tree shrew, Zoological Research. doi: 10.3724/SP.J.1141.2011.01004
    [10] WU Wen-Jian, SHEN Bin, Chen Cheng, SHEN He-Ding*, WEI Luan-Luan, WANG Ling, LI K.  Preliminary Classification and Phylogenetic Relationship Among Onchidiidae in China Inferred from 18S rRNA Partial Sequence, Zoological Research. doi: 10.3724/SP.J.1141.2010.04381
    [11] ZHANG Ding, GAO Li, ZHANG Yuan-xu, SUN Li, FENG Yue, HE You-wen, XIA Xue-shan, ZHAN.  Crucial Factors for de novo Establishment of Long-term Primary Culture of Tree Shrew Hepatocytes, Zoological Research. doi: 10.3724/SP.J.1141.2009.01024
    [12] YANG Min, ZHANG Chi-yu, BEN Kun-long.  Cloning and Sequence Analysis of Cyclin T1 cDNA from Tree Shrew (Tupaia belangeri), Zoological Research.
    [13] ZHOU Kai-Ya.  Molecular Phylogenetics of Amphibians and Reptiles, Zoological Research.
    [14] ZHANG Li, BEN Kun-Long.  In vitro Infection of Tree Shrew Immunocytes with Human Immunodeficiency Virus Type Ⅰ, Zoological Research.
    [15] ZHENG Zi-xiu, ZHONG Jin-yan.  Studies on The Lactate Dehydrogenase Isoenzymes of Tree Shrew (Tupaia belangeri chinensis) Tissues:An Electrophoretic Analysis on The Agarose Gel ), Zoological Research.
    [16] CAO Xiao-mei.  Microscopic Structure of Ovary and Ovarian Activity of Different Seasons in Tree Shrew (Tupaia belangeri chinensis), Zoological Research.
    [17] YE Zhi-zhang, PENG Yen-zhang, PAN Ru-liang, WANG Hong.  Arterial System in Chinese Tree Shrew (Tupaia belangeri chinensis), Zoological Research.
    [18] CAO Xiao-mei.  Seasonal Changes in Spermatogenesis of Tree Shrew (Tupaia Belangeri Chinensis), Zoological Research.
    [19] MA Cai-xia, MA Kun, SHI Li-ming.  Electron Microscopic Observations on The Synaptonemal Complex in Spermatocytes of The Tree Shrew (Tupaiabelangeri Chinensis), Zoological Research.
    [20] ZHANG Ya-ping, ZHANG Bing, SHI Li-ming.  Restriction Maps of Mitochondrial DNA of Slow Loris and Tree Shrew, Zoological Research.
  • 加载中
计量
  • 文章访问数:  1751
  • HTML全文浏览量:  43
  • PDF下载量:  3110
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-24
  • 修回日期:  2013-01-24
  • 刊出日期:  2013-04-08

目录

    /

    返回文章
    返回