留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Afferent and efferent pathways in the visual system of the freshwater snail Planorbarius corneus

Oksana P Tuchina Valery V Zhukov Victor Benno Meyer-Rochow

Oksana P Tuchina, Valery V Zhukov, Victor Benno Meyer-Rochow. Afferent and efferent pathways in the visual system of the freshwater snail Planorbarius corneus. Zoological Research, 2011, 32(4): 403-420. doi: 10.3724/SP.J.1141.2011.04403
Citation: Oksana P Tuchina, Valery V Zhukov, Victor Benno Meyer-Rochow. Afferent and efferent pathways in the visual system of the freshwater snail Planorbarius corneus. Zoological Research, 2011, 32(4): 403-420. doi: 10.3724/SP.J.1141.2011.04403

淡水蜗牛视觉系统的输入与输出通路(英文)

doi: 10.3724/SP.J.1141.2011.04403
详细信息
    作者简介:

    Oksana P Tuchina

    通讯作者:

    Victor Benno Meyer-Rochow

Afferent and efferent pathways in the visual system of the freshwater snail Planorbarius corneus

More Information
    Author Bio:

    Oksana P Tuchina

    Corresponding author: Victor Benno Meyer-Rochow
  • 摘要: 通过神经生物素在视神经上的逆行性传输对淡水蜗牛(Planorbarius corneus)视网膜及中央神经节的输入、输出神经元进行标记。由于没有发现突触联系, 所以至少一部分光感受细胞的轴突可被视为直接参与形成视神经。这些神经元的轴突进入大脑神经节形成密集的细传入神经纤维束-视神经堆。传出神经元则存在于除颊部以外的所有神经节。一些上行轴突在大脑神经节处分叉, 通过脑-脑联合, 到达对侧眼并在眼杯处形成分枝。部分传出神经元的轴突也投射于不同的外周神经, 如:n.n. intestinalis, pallialis dexter, pallialis sinister internus et externus。五羟色胺能纤维和FMRF-酰胺能纤维均存在于视神经上, 且这些纤维隶属于只投射在同侧眼的中央神经元。它们形成了位于眼杯处的丰富曲张结构及视网膜核心层, 并且可能有助于调节视网膜对光的敏感性。
  • [1]  Alkon D. Neural organization of molluscan visual system. 1973 [J]. Gen Physiol, 61: 444-461.
    [2]  Barlow RBJ, Bolanowski SJJ, Brachman ML. 1977. Efferent optic nerve fibres mediate circadian rhythm in the Limulus eye [J]. Science 197: 86-89.
    [3]  Barlow RB, Kaplan E, Renninger GH, Saito T. 1985. Efferent control of circadian rhythms in the Limulus lateral eye [J]. Neurosci Res, 2: 65-78.
    [4]  Battelle BA, Evans JA, Chamberlain SC. 1982. Efferent fibres to Limulus eyes synthesizeand release octopamine [J]. Science 216: 1250-1252.
    [5]  Battelle BA. 1984. Efferent  innervation to Limulus eyes [J]. Trends Neurosci, 7: 277-282.
    [6]  Battelle BA. 2006. The eyes of Limulus polyphemus (Xiphosura, Chelicerata) and their afferent and efferent projections [J]. Arth Struct Develop, 35: 261-274.
    [7]  Block GD, McMahon DG, Wallace SF, Friesen WO. 1984. Cellular analysis of the Bulla ocular circadian pacemaker system. I. A model for retinal organization
    [J]. Comp Physiol, A155: 365-378.
    [9]  Block GD, McMahon DG. 1984. Cellular analysis of the Bulla ocular circadian pacemaker system. III. Localization of the circadian pacemaker system [J]. Comp Physiol, A155: 387-395.
    [10]  Bobkova MV. 1998. Structural and functional organization of peripheral part of the visual system of the common pond snail Lymnaea stagnalis [J]. Evol Biochem Physiol, 34(6): 531-546.
    [11]  Bobkova MV, Gál J, Zhukov VV, Shepeleva IP, Meyer-Rochow VB. 2004. Variations in the retinal designs of pulmonate snails (Mollusca, Gastropoda): squaring phylogenetic background and ecophysiological needs (I) [J]. Invert Biol, 123(2): 101-115.
    [12]  Calman BG & Battelle BA. 1991. Central origin of the efferent neurons projecting to the eyes of Limulus polyphemus [J]. Vis Neurosci 6(5): 481-95.
    [13]  Chamberlain SC, Barlow RB. 1979. Light and efferent activity control rhabdom turnover in Limulus photoreceptors [J]. Science, V206: 361-363.
    [14]  Colwell CS, Khalsa SB, Block GD. 1992. FMRF-amide modulates the action of phase shifting agents on the ocular circadian pacemakers of Aplysia and Bulla [J]. Comp Physiol, 170A: 211-215.
    [15]  Corrent G, McAdoo D, Eskin A. 1978. Serotonin shifts the phase of the circadian rhythm from the Aplysia eye [J]. Science, 202: 977-979.
    [16]  Crow T & Bridge MC. 1985. Serotonin modulates photoresponses in Hermissenda type-B photoreceptors [J]. Neurosci Lett 60(1): 83-8.
    [17]  Eskin A, Maresh RD. 1982. Serotonin or electrical optic nerve stimulation increases the photosensitivity of the Aplysia eye [J]. Comp Biochem Physiol, 73C: 27-31.
    [18]  Fleissner G, Fleissner G. 1978. The optic nerve mediates the circadian pigment migration in the median eyes of the scorpion [J]. Comp Biochem Physiol, 61A: 69-71.
    [19]  Fleissner G, Fleissner G. 2002. Retinal Circadian Rhythms. In: Biological Rhythms. Ed. Vinod Kumar
    [M]. Narosa Publishing House. New Dehli. 71-82.
    [21]  Fleissner G, Schliwa M. 1977. Neurosecretory Fibres in the Median Eyes of the Scorpion, Androctonus australis L [J]. Cell Tiss Res 178(2): 189-198.
    [22]  Gál J, Bobkova MV, Zhukov VV, Shepeleva IP, Meyer-Rochow VB. 2004. Fixed focal-length optics in pulmonate snails (Mollusca, Gastropoda): squaring phylogenetic background and ecophysiological needs (II) [J]. Invert Biol, 123(2): 116-127.
    [23]  Gleadall IG, Ohtsu K, Gleadall E, Tsukahara Y. 1993. Screening-pigment migration in the octopus retina includes control by dopaminergic efferents [J]. Exp Biol, 185: 1-16.
    [24]  Jacklet JW. 1969. Electrophysiological organization of the eye of Aplysia [J]. Gen Physiol, 53: 21-42. 
    [25]  Jacklet JW. 1973. Neuronal population interactions in a circadian rhythm in Aplysia. In Neurobiology of Invertebrates (ad. J.Salánki) [M]. Akademiai Kiado, Budapest. 363-380.
    [26]  Jacklet JW, Rolerson C. 1982. Electrical activity and structure of retinal cells of the Aplysia eye: II. Photoreceptors [J]. Exp Biol, 99: 381-395.
    [27]  Jacklet JW, Schuster L, Rolerson C. 1982. Electrical activity and structure of retinal cells of the Aplysia eye: I. Secondary neurons [J]. Exp Biol, 99: 369-380.
    [28]  Jacklet JW, Colquhoun W. 1983. Ultrastructure of photoreceptors and circadian pacemaker neurons in the eye of a gastropod, Bulla [J]. Neurocytol, 12: 673-696.
    [29]  Jacklet JW. 1984. Neural organization and cellular mechanisms of circadian pacemakers [J]. Int Rev Cytol, 89: 251-294.
    [30]  Jacklet JW, Klose M, Goldberg M. 1987. FMRF amide-like immunoreactive efferent fibres and FMRF amide suppression of pacemaker neurons in eyes of Bulla [J]. Neurobiol, 18: 433-449.
    [31]  Kononenko NL, Zhukov VV. 2005. Neuroanatomical and immunocytochemical study of the head retractor muscle (HRM) innervation in the pond snail, Lymnaea stagnalis L
    [J]. Zool, 108(3): 217-237.
    [33]  Lacroix L, Strack S, Olson L, Jacklet JW. 1991. Axons of circadian pacemaker neurons in the eye of Bulla project to the central nervous system and contralateral eye
    [J]. Comp Biochem Physiol, 98A: 383-391.
    [35]  Michel S, Schoch K, Stevenson PA. 2000. Amine and amino acid transmitters in the eye of the mollusc Bulla gouldiana: An immunocytochemical study [J]. Comp Neurol 425: 244–256.
    [36]  Nadakavukaren JJ, Lickey ME, Jordan WP. 1986. Regulation of the circadian clock in the Aplysia eye: mimicry of neural action by serotonin [J]. Neurosci 6:14-21.
    [37]  Olson LM, Jacklet JW. 1985. The circadian pacemaker in the Aplysia eye sends axons throughout the central nervous system [J]. Neurosci, 5: 3214-3227.
    [38]  Ovchinnikov AV. 1986. Morphological characteristics of chemosensory, visual and statocyst pathways in the snail Helix lucorum [J]. Neurophysiol, 18(1): 1-9.
    [39]  Patton ML, Kater SB. 1972. Electrotonic conduction in the optic nerves of planorbid snails [J]. Exp Biol, 56: 695-702.
    [40]  Roberts MH, Block GD. 1985. Analysis of mutual circadian pacemaker coupling between the two eyes of Bulla [J]. Biol Rhythm, 1(1): 55-75.
    [41]  Roberts MH, Block GD, Lusska AE. 1987. Comparative studies of circadian pacemaker coupling in Opisthobranch molluscs [J]. Brain Res, 423(1-2): 286-292.
    [42]  Roberts MH, Moore RY. 1987. Localization of neuropeptides in efferent terminals of the eye in the marine snail, Bulla gouldiana [J]. Cell Tiss Res, 248(1): 67-73.
    [43]  Sakakibara M, Kawai R, Kobayashi S, Horikoshi T. 1998. Associative learning of visual and vestibular stimuli in Lymnaea [J]. Neurobiol Learning and Memory, 69: 1-12.
    [44]  Sakakibara M. 2006. Comparative study of visuo-vestibular conditioning in Lymnaea stagnalis [J]. Biol Bull, 210: 298-307.
    [45]  Suzuki H, Tasaki K. 1983. Inhibitory retinal efferents from dopaminergic cells in the optic lobe of the Octopus [J]. Vision Res, 23: 451-457.
    [46]  Takahasi JS, Nelson DE, Eskin A. 1989. Immunocytochemical localization of serotonergic fibres innervating the ocular circadian system of Aplysia [J]. Neurosci, 28: 139-147.
    [47]  Tuchina OP, Zhukov VV, Meyer-Rochow VB. Central and peripheral neuronal pathways revealed by backfilling with neurobiotin in the optic, tentacular and small labial nerves of Lymnaea stagnalis [J]. Acta Zool (in press).
    [48]  Uehara A, Uehara K, Ogawa KE. 1993. Efferent fibres and daily rhabdomal changes in the anteromedial eye of the liphistiid spider, Heptathela kimurai [J]. Cell Tiss Res 272: 517-522.
    [49]  Vakoljuk IA, Zhukov VV. 2000. The study of Lymnaea stagnalis photoreception from phototaxis manifestation [J]. Evol Biochem Physiol, 36(5): 544-550.
    [50]  Yamashita S. 1990. Efferent optic nerve impulses in response to illumination of single eyes of orb weaving spiders [J]. Vision Res, 30(6): 817-821. 
    [51]  Yamashita S, Tateda H. 1981. Efferent neural control in the eyes of orb weaving spiders [J]. Comp Physiol, 143: 477-483.
    [52]  Yamashita S, Tateda H. 1983. Cerebral photosensitive neurons in the orb weaving spiders, Argiope bruennichii and A. amoena [J]. Comp Physiol, 150: 467-472.
    [53]  Yamashita S. 2002. Efferent innervation of photoreceptors in spiders [J]. Microscop Res Tech, 58: 356-364
    [54]  Zaitseva OV. 1982. Sensory elements in the central nervous system of the snail Lymnaea stagnalis (pleuro-visceral loop of the ganglia) [J]. Zh Evol Biohim Phisiol, 18(5): 482-490 (in Russian).
    [55]  Zaitseva OV, Kovalev VA, Sokolov VA. 1982. Investigation of the cerebral region of the visual system in pulmonate mollusks [J]. Neirofiziol, 14(2): 179-184 (in Russian).
    [56]  Zaitseva OV. 1987. The central elements of the tentacular and osphradial sensory systems of the pond snail Lymnaea stagnalis [J]. Sens Sist, 1(2): 154-165 (in Russian).
    [57]  Zhukov VV. 1993. Some optical properties of lenses of freshwater pulmonate snails Lymnaea stagnalis L. and Planorbarius corneus L [J]. Sens Sist, 7(2): 17-24 (in Russian).
    [58]  Zhukov VV, Bobkova MV, Vakoljuk IA. 2002. Eye structure and vision in the freshwater pulmonate mollusc Planorbarius corneus [J]. Evol Biochem Physiol, 38(4): 419-430.
    [59]  Zhukov VV, Kononenko NL, Panormov IB, Borissenko SL. 2006. Serotonin changes the electrical responses to light of the eye of Lymnaea stagnalis [J]. Sens Sist, 20(4): 270-278 (in Russian).
    [60]  Zhukov VV, Tuchina OP. 2006. Topographical asymmetry of efferent neurons in visual system of freshwater gastropod Lymnaea stagnalis. Abstr. International conference on functional neuromorphology. SPb (in Russian).
    [61]  Zhukov VV. 2007. On the problem of retinal transmitters of the freshwater mollusc Lymnaea stagnalis [J]. Evol Biochem Physiol, 43(5): 524-532.
    [62]  Zhukov VV, Tuchina OP. 2008. Structure of visual pathways in the nervous system of freshwater pulmonate mollusks [J]. Evol Biochem Physiol, 44(3): 341-353.
    [63]  
    [64]  
  • [1] Bo Zhang, Zhi-Gang Zhou, Yin Zhou, Yong-Chang Chen.  Increased attention to snake images in cynomolgus monkeys: an eye-tracking study, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.005
    [2] Ting Yan, Hui-Hui Zhou.  Synchronization between frontal eye field and area V4 during free-gaze visual search, Zoological Research. doi: 10.24272/j.issn.2095-8137.2019.055
    [3] Yue Yu, Jun Huang, Chun-Ming Zhang, Tian-Wen Chen, David S. Sandlin, Shao-Xun Wang, Alberto A. Arteaga, Jerome Allison, Yang Ou, Susan Warren, Paul May, Hong Zhu, Wu Zhou.  Passive eye movements induced by electromagnetic force (EMF) in rats, Zoological Research. doi: 10.24272/j.issn.2095-8137.2019.024
    [4] Li-Na Du, Jun Chen, Guo-Hua Yu, Jun-Xing Yang.  Systematic relationships of Chinese freshwater semisulcospirids (Gastropoda, Cerithioidea) revealed by mitochondrial sequences, Zoological Research. doi: 10.24272/j.issn.2095-8137.2019.033
    [5] Hong-Fa LU, Li-Na DU, Zhi-Qiang LI, Xiao-Yong CHEN, Jun-Xing YANG.  Morphological analysis of the Chinese Cipangopaludina species (Gastropoda; Caenogastropoda: Viviparidae), Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.6.510
    [6] Li-Na ZHANG, Chang-He RONG, Yuan HE, Qiong GUAN, Bin HE, Xing-Wen ZHU, Jia-Ni LIU, Hong-Ju CHEN.  A bird’s eye view of the algorithms and software packages for reconstructing phylogenetic trees, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.6.0640
    [7] Oksana P. TUCHINA, Valery V. ZHUKOV, Victor B. MEYER-ROCHOW.  Distribution of serotonin and FMRF-amide in the brain of Lymnaea stagnalis with respect to the visual system, Zoological Research. doi: 10.3724/SP.J.1141.2012.01-02e1
    [8] LIU Jian-Tao, YANG Yong, GUO Xiao-Gang, CHEN Miao, DING Huan-Zhong, CHEN Yong-Long.  Over-expression of atf4 in Xenopus embryos interferes with neurogenesis and eye formation, Zoological Research. doi: 10.3724/SP.J.1141.2011.05485
    [9] ZHANG Qing-Yu, FAN Xiao-Na, CAO Yi.  Expression of cannabinoid and opioid receptors in nervous as well as immune systems of Macaca mulatta and Tupaia belangeri, Zoological Research. doi: 10.3724/SP.J.1141.2011.01031
    [10] MA Dong-mei, ZHU Hua-ping, GUI Jian-fang.  Molecular Cloning and Expression Characterization of Prox1 in Goldfish (Carassius auratus) Eye Development, Zoological Research.
    [11] ZHOU Dao-lei, ZHAO Ya-jun*, LI Bao-ming*, SHI Zheng-xiang.  Effect of Transport Space Allowance on Piglets' Behaviour and Performance, Zoological Research.
    [12] GONG Shi-ping, SHI Hai-tao, XIE Cai-jian, CHEN Chuan, XU Ru-mei.  Spring Habitat Selection by Four Eyespotted Turtle (Sacalia quadriocellata) in Limu Mountain of Hainan Island, Zoological Research.
    [13] XUE Jun-zeng.  Neurogenesis and Development of the Central Nervous System in the Embryo Stage of Swimming Crabs, Portunus trituberculatus, Zoological Research.
    [14] LUO Yong-ting, YUAN Wei-jia, MA Yong-jie, ZHANG Hui-qi SHENG Chun.  Morphology and Ultrastructure of the Compound Eye in the Mud Crab (Scylla serrata), Zoological Research.
    [15] WU Min.  Study on the Bradybaenid Landsnails in NW Sichuan (Gastropoda:Pulmonata:Stylommatophora), Zoological Research.
    [16] YE Shu-Feng, LU Jian-Jian.  Analysis on the Spatial Distribution of Bullacta exarata (Mollusca:Gastropoda:Atyidae) Population in Yangtze River Estuary,China, Zoological Research.
    [17] WENG You-Zhu, HUANG Wei-Quan, FANG Yong-Qiang, YAO Bing, SUN Lan.  Study on GnRH Receptor (GnRHR) mRNA In situ Hybridization in The Nervous System,Hatschek's Pit and Gonad of Amphioxus,Branchiostoma belcheri, Zoological Research.
    [18] WANG Ming-zhong, PENG Xian-pu, WU Lei, CHENG Yi-fong.  A Study on The Phenotype Characteristics and Mechanism of Formation of W[aR84h] 89b10 Eye-Variegation Strain of Drosophila melanogaster, Zoological Research.
    [19] MENG Qing-wen.  Studies on The Blood Vessels of Eye,Gas Bladder and Kidney of Snakehead, Zoological Research.
    [20] XIA Wu-ping.  The Subfossil Margarya (Gastropoda,Viviparidae) From West Coast of Kunming Lake,With A Discussion of its Evolution, Zoological Research.
  • 加载中
计量
  • 文章访问数:  1484
  • HTML全文浏览量:  26
  • PDF下载量:  1626
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-15
  • 修回日期:  2011-06-09
  • 刊出日期:  2011-08-22

目录

    /

    返回文章
    返回