留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis

CAO Guang NIE Wen-Hui LIU Feng-Liang KUANG Yi-Qun WANG Jin-Huan SU Wei-Ting ZH Y

CAO Guang, NIE Wen-Hui, LIU Feng-Liang, KUANG Yi-Qun, WANG Jin-Huan, SU Wei-Ting, ZH Y. Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis. Zoological Research, 2011, 32(1): 40-49. doi: 10.3724/SP.J.1141.2011.01040
Citation: CAO Guang, NIE Wen-Hui, LIU Feng-Liang, KUANG Yi-Qun, WANG Jin-Huan, SU Wei-Ting, ZH Y. Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis. Zoological Research, 2011, 32(1): 40-49. doi: 10.3724/SP.J.1141.2011.01040

熊猴存在TRIM5/TRIMCyp杂合子基因型

doi: 10.3724/SP.J.1141.2011.01040
基金项目: 国家重点基础研究发展计划(“973”) (2006CB504302); 国家自然科学基金(U0832601,30671960); 国家科技重大专项“十一五”计划 (2009ZX09501-029); 中国科学院知识创新工程重要方向项目(KSCX2-EW-R-13)资助
详细信息
    作者简介:

    曹 光, 男, 硕士研究生, 主要从事TRIM5?限制HIV-1复制机制的研究

  • 中图分类号: R-332; Q959.848; R512.91

Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis

More Information
    Author Bio:

    CAO Guang

  • 摘要: 缺乏合适的动物模型是制约艾滋病研究取得重大突破的关键瓶颈之一。细胞内的抗病毒蛋白被称为限制因子。研究不同灵长类动物抗HIV-1宿主限制因子的存在形式及作用机制对建立合适AIDS灵长类动物模型有十分重要的意义。TRIM5α是哺乳动物细胞中一种重要和关键的限制因子, 它以物种依赖的方式限制包括HIV-1在内的逆转录病毒的感染。TRIM5-CypA融合基因是存在于新大陆猴与旧大陆猴中的一种独特的TRIM5基因形式。为了研究不同灵长类动物TRIM5基因的存在方式, 该文对熊猴、藏酋猴、红面猴及中国恒河猴4个物种共110只灵长类动物进行了TRIM5-CypA融合模式的研究。首次发现熊猴也存在TRIM5-CypA基因融合现象。熊猴TRIMCyp融合基因形成模式类似于北平顶猴TRIMCyp融合基因模式, 即CypA假基因的cDNA序列通过逆转座方式插入到TRIM5基因的3'-UTR区域。基因序列分析表明, 该基因与北平顶猴相应基因序列高度相似; 并且其TRIM5内含子6的3'-剪接位点也相应存在G-to-T突变现象(G/T)。这提示熊猴也极有可能像北平顶猴一样表达TRIM5-CypA融合蛋白, 从而导致熊猴可能跟北平顶猴一样可能被HIV-1感染。因此, 熊猴极有希望成为一种新的HIV/AIDS灵长类动物模型。
  • [1] Bieniasz PD. 2004. Intrinsic immunity: a front-line defense against viral attack[J]. Nat Immunol, 5(11): 1109-1115.Brennan G, Kozyrev Y, Kodama T, Hu SL. 2007. Novel TRIM5 isoforms expressed by Macaca nemestrina[J]. J Virol, 81(22): 12210-12217.Brennan G, Kozyrev Y, Hu SL. 2008. TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis [J]. Proc Natl Acad Sci USA, 105(9): 3569-3574.Diaz-Griffero F, Vandegraaff N, Li Y, McGee-Estrada K, Stremlau M, Welikala S, Si Z, Engelman A, Sodroski J. 2006. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1 [J]. Virology, 351(2): 404-419.Franke EK, HE Y, Luban J. 1994. Specific incorporation of cyclophilin A into HIV-1 virions[J]. Nature, 372(6504): 359-362.Gao G, Guo X, Goff SP. 2002. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein [J]. Science, 297(5587): 1703-1706.Groves CP. 2001. Primate Taxonomy [M]. Washington, DC, USA: Smithsonian Institution Press.Hatziioannou T, Ambrose Z, Chung NP, Piatak M Jr, Yuan F, Trubey CM, Coalter V, Kiser R, Schneider D, Smedley J, Pung R, Gathuka M, Estes JD, Veazey RS, KewalRamani VN, Lifson JD, Bieniasz PD. 2009. A macaque model of HIV-1 infection [J]. Proc Natl Acad Sci USA, 106(11): 4425-4429.Kuang YQ, Tang X, Liu FL, Jiang XL, Zhang YP, Cao G, Zheng YT. 2009. Genotyping of TRIM5 locus in northern pig-tailed macaques (Macaca leonina), a primate species susceptible to Human Immunodeficiency Virus type 1 infection [J]. Retrovirology, 6: 58.Li X, Song B, Xiang SH, Sodroski J. 2007. Functional interplay between the B-box 2 and the B30.2(SPRY) domains of TRIM5alpha [J]. Virology, 366(2): 234-244.Liao CH, Kuang YQ, Liu HL, Zheng YT, Su B. 2007. A novel fusion gene, TRIM5-Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection [J]. AIDS, 21 (Suppl 8): S19-26.Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP. 1993. Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B [J]. Cell, 73(6): 1067-1078.Neil SJ, Zang T, Bieniasz PD. 2008. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu [J]. Nature, 451(7177): 425-430.Newman RM, Hall L, Kirmaier A, Pozzi LA, Pery E, Farzan M, O'Neil SP, Johnson W. 2008. Evolution of a TRIM5-CypA splice isoform in old world monkeys [J]. PLoS Pathog, 4(2): e1000003.Nisole S, Lynch C, Stoye JP, Yap MW. 2004. A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1 [J]. Proc Natl Acad Sci USA, 101(36): 13324-13328.Ribeiro IP, Menezes AN, Moreira MA, Bonvicino CR, Seuanez HN, Soares MA. 2005. Evolution of cyclophilin A and TRIMCyp retrotransposition in New World primates [J]. J Virol, 79(23): 14998-15003.Sawyer SL, Wu LI, Emerman M, Malik HS. 2005. Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain [J]. Proc Natl Acad Sci USA, 102(8): 2832-2837.Sayah DM, Sokolskaja E, Berthoux L, Luban J. 2004. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 [J]. Nature, 430(6999): 569-573.Schaller T, Hue S, Towers GJ. 2007. An active TRIM5 protein in rabbits indicates a common antiviral ancestor for mammalian TRIM5 proteins [J]. J Virol, 81(21): 11713-11721.Sheehy AM, Gaddis NC, Choi JD, Malim MH. 2002. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein [J]. Nature, 418(6898): 646-650.Si Z, Vandegraaff N, O'Huigin C, Song B, Yuan W, Xu C, Perron M, Li X, Marasco WA, Engelman A, Dean M, Sodroski J. 2006. Evolution of a cytoplasmic tripartite motif (TRIM) protein in cows that restricts retroviral infection [J]. Proc Natl Acad Sci USA, 103(19): 7454-7459.Song B, Gold B, O'Huigin C, Javanbakht H, Li X, Stremlau M, Winkler C, Dean M, Sodroski J. 2005. The B30.2(SPRY) domain of the retroviral restriction factor TRIM5α exhibits lineage-specific length and sequence variation in primates [J]. J Virol, 79(10): 6111-6121.Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J. 2004. The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys [J]. Nature, 427(6977): 848-853.Tang X, Kuang YQ, Zheng YT.2009. Research advance of TRIM5α on structure and restriction mechanism to HIV-1 replication [J]. Chin J Virol, 25(2): 148-153. [汤霞, 况轶群, 郑永唐. 2009. TRIM5α分子结构和限制 HIV-1 复制机制的研究进展. 病毒学报, 25(2): 148-153.]Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, Gottlinger HG. 1994. Functional association of cyclophilin A with HIV-1 virions [J]. Nature, 372(6504): 363-365.Towers GJ. 2007. The control of viral infection by tripartite motif proteins and cyclophilin A [J]. Retrovirology, 4: 40.Virgen CA, Kratovac Z, Bieniasz PD, Hatziioannou T. 2008. Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species [J]. Proc Natl Acad Sci USA, 105(9): 3563-3568.Wilson SJ, Webb BL, Ylinen LM, Verschoor E, Heeney JL, Towers GJ. 2008. Independent evolution of an antiviral TRIMCyp in rhesus macaques [J]. Proc Natl Acad Sci USA, 105(9): 3557-3562.Wolf D, Goff SP. 2007. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells [J]. Cell, 131(1): 46-57.Xu L, Yang L, Moitra PK, Hashimoto K, Rallabhandi P, Kaul S, Meroni G, Jensen JP, Weissman AM, D'Arpa P. 2003. BTBD1 and BTBD2 colocalize to cytoplasmic bodies with the RBCC/tripartite motif protein, TRIM5δ[J]. Exp Cell Res, 288(1): 84-93.Ylinen LM, Keckesova Z, Webb BL, Gifford RJ, Smith TP, Towers GJ. 2006. Isolation of an active Lv1 gene from cattle indicates that tripartite motif protein-mediated innate immunity to retroviral infection is widespread among mammals [J]. J Virol, 80(15): 7332-7338.Zhang F, Hatziioannou T, Perez-Caballero D, Derse D, Bieniasz PD. 2006. Antiretroviral potential of human tripartite motif-5 and related proteins [J]. Virology, 353(2): 396-409.
     
  • [1] Ling Xu, Dan-Dan Yu, Yu-Hua Ma, Yu-Lin Yao, Rong-Hua Luo, Xiao-Li Feng, Hou-Rong Cai, Jian-Bao Han, Xue-Hui Wang, Ming-Hua Li, Chang-Wen Ke, Yong-Tang Zheng, Yong-Gang Yao.  COVID-19-like symptoms observed in Chinese tree shrews infected with SARS-CoV-2, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.053
    [2] Gary Wong, Xiang-Guo Qiu.  Type I interferon receptor knockout mice as models for infection of highly pathogenic viruses with outbreak potential, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.052
    [3] Wei-Na Guo, Bin Zhu, Ling Ai, Dong-Liang Yang, Bao-Ju Wang.   Animal models for the study of hepatitis B virus infection, Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.013
    [4] Gary Wong, Wen-Guang Cao, Shi-Hua He, Zi-Rui Zhang, Wen-Jun Zhu, Estella Moffat, Hideki Ebihara, Carissa Embury-Hyatt, Xiang-Guo Qiu.  Development and characterization of a guinea pig model for Marburg virus, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.054
    [5] Yong-Gang Yao.  Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.032
    [6] Ji Xiao, Rong Liu, Ce-Shi Chen.  Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model, Zoological Research. doi: 10.24272/j.issn.2095-8137.2017.033
    [7] Ming GUO, Wen-Zhe HO.  Animal models to study Mycobacterium tuberculosis and HIV co-infection, Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.3.163
    [8] Ai-Hua LEI, Wei PANG, Gao-Hong ZHANG, Yong-Tang ZHENG.  Use and research of pigtailed macaques in nonhuman primate HIV/AIDS models, Zoological Research. doi: 10.3724/SP.J.1141.2013.02077
    [9] WANG Wen-Guang, HUANG Xiao-Yan, XU Juan, SUN Xiao-Mei, DAI Jie-Jie, LI Qi-Han.  Experimental studies on infant Tupaia belangeri chineses with EV71 infection, Zoological Research. doi: 10.3724/SP.J.1141.2012.01007
    [10] GUO Li-Yun, WEI Jing-Kuan, YANG Shang-Chuan, WANG Zheng-Bo.  Glaucoma model for stem cell transplantation research in New Zealand white rabbits, Zoological Research. doi: 10.3724/SP.J.1141.2012.02225
    [11] ZHU Hui-Fang, ZHANG Yuan-Xu, ZHAO Xu-Dong.  Animal models of human glioma: the progress of application and investigation, Zoological Research. doi: 10.3724/SP.J.1141.2012.03337
    [12] CAO Guang, LIU Feng-Liang, ZHANG Gao-Hong, ZHENG Yong-Tang.  The primate TRIMCyp fusion genes and mechanism of restricting retroviruses replication, Zoological Research. doi: 10.3724/SP.J.1141.2012.01099
    [13] SHEN Pei-Qing, ZHENG Hong, LIU Ru-Wen, CHEN Li-Ling, LI Bo, HE Bao-Li, LI Jin-Tao, BE.  Progress and prospect in research on laboratory tree shrew in China, Zoological Research. doi: 10.3724/SP.J.1141.2011.01109
    [14] LI Yao, DAI Jie-Jie, SUN Xiao-Mei, XIA Xue-Shan.  Progress in studies on HCV receptor of Tupaia as a potential hepatitis C animal model, Zoological Research. doi: 10.3724/SP.J.1141.2011.01097
    [15] ZHU Lin, ZHANG Gao-Hong, ZHENG Yong-Tang.  Application Studies of Animal Models in Evaluating Safety and Efficacy of HIV-1 Microbicides, Zoological Research. doi: 10.3724/SP.J.1141.2010.01066
    [16] HANG Gao-hong, LI Ming-hua, ZHENG Yong-tang.  Application of AIDS Macaque Animal Model in HIV Vaccine Research, Zoological Research.
    [17] ZHANG Gao-hong, CHEN Ya-li, TANG Hong, ZHENG Yong-tang.  Humanized SCID Mouse:A Small Animal Model for HIV Research, Zoological Research.
    [18] WANG Jian-hua, WANG Yuan-yuan, OUYANG Dong-yun, ZHENG Yong-tang.  Apoptosis in Human Immunodeficiency Virus Infection, Zoological Research.
    [19] GUO Ren, CHEN Shu-fan, LUO Qi-sheng, WANG Qing-ling, YI Hong-kun, ZHAN Qiong-fen.  Transgenic Mice as A Model For Neurovirulence Test of Live Poliomyelitis Vaccines, Zoological Research.
    [20] HUANG Hai, BEN Kun-long, ZHENG Yong-tang.  Current Status in Research on Animal Models For human Aquired Immunodeficiency Syndrome, Zoological Research.
  • 加载中
计量
  • 文章访问数:  2230
  • HTML全文浏览量:  22
  • PDF下载量:  1883
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-01
  • 修回日期:  2010-12-30
  • 刊出日期:  2011-02-22

目录

    /

    返回文章
    返回