留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory

Rong-Jun Ni Yang Tian Xin-Ye Dai Lian-Sheng Zhao Jin-Xue Wei Jiang-Ning Zhou Xiao-Hong Ma Tao Li

Rong-Jun Ni, Yang Tian, Xin-Ye Dai, Lian-Sheng Zhao, Jin-Xue Wei, Jiang-Ning Zhou, Xiao-Hong Ma, Tao Li. Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory. Zoological Research, 2020, 41(3): 258-272. doi: 10.24272/j.issn.2095-8137.2020.034
Citation: Rong-Jun Ni, Yang Tian, Xin-Ye Dai, Lian-Sheng Zhao, Jin-Xue Wei, Jiang-Ning Zhou, Xiao-Hong Ma, Tao Li. Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory. Zoological Research, 2020, 41(3): 258-272. doi: 10.24272/j.issn.2095-8137.2020.034

实验室中雄性树鼩对陌生同类表现出社交回避行为而雄性小鼠则表现出亲社会行为

doi: 10.24272/j.issn.2095-8137.2020.034

Social avoidance behavior in male tree shrews and prosocial behavior in male mice toward unfamiliar conspecifics in the laboratory

Funds: This study was supported by the National Natural Science Foundation of China (81671344; 31500859), Major International (Regional) Joint Research Project of the National Natural Science Foundation of China (81920108018), 1.3.5 Project for Disciplines of Excellence, Special Foundation for Brain Research from the Science and Technology Program of Guangdong (2018B030334001), and West China Hospital of Sichuan University (ZY2016103; ZY2016203)
More Information
  • 摘要:

    成年雄性树鼩对入侵的同类防御剧烈。但是,这些雄性树鼩的社交行为特征尚未得到全面探究。本研究中,首先让雄性野生的中国树鼩和C57BL/6J小鼠熟悉测试用的旷场箱子,树鼩在新颖的旷场环境中运动的时间较短,而小鼠则表现较长的运动时间。在30分钟的社会偏好与回避实验中,目标树鼩(入侵者)显著减少了实验树鼩(居住者)在社会交互区域(SI)中的停留时间,而实验小鼠表现出相反的结果。此外,实验树鼩表现出在第二个15分钟测试(存在目标树鼩)中进入SI中的潜伏期比在第一个15分钟测试(无目标树鼩)中更长,这与在小鼠中发现的结果不同。在第一个、第二个和第三个5分钟时间内,还观察到了雄性树鼩和小鼠对于同类入侵者表现出不同的行为范式,因此,树鼩和小鼠的社交行为似乎表现出时间依赖性。总而言之,我们的研究提供了一种改良的社会偏好与回避实验方法用于评估树鼩的社交行为。我们的发现表明,雄性树鼩对陌生同类表现出社交回避行为,而雄性小鼠对陌生同类表现出亲社会行为。树鼩可能是一种新的用于研究社会回避和亲社会行为的动物模型,这不同于小鼠社交模型。

  • Figure  1.  Total distance and movement provide information about general activity of tree shrews and mice

    A: Total distance moved by tree shrews and mice in box during 5 min open-field test and every 2.5 min (left). Heatmaps show locomotor activity expressed as distance traveled in successive 1 min bins in open-field test over a 5 min period for each tree shrew and mouse (right). B: Total cumulative duration of movement (moving) of tree shrews and mice in open-field box during a 5 min sample period and every 2.5 min. Values are means±SEM (tree shrew: n=19; mouse: n=23).

    Figure  2.  Social preference-avoidance test in tree shrews

    A: Schematic of social preference-avoidance test in tree shrews. Social interaction (SI) behaviors were assessed in the compartment. Test arena (SI zone and non-SI zone) and target (novel tree shrew) zone were blocked by perforated Plexiglas partition. Shadow indicates SI zone. B: Heatmaps show cumulative duration spent by wild-type tree shrews throughout compartment during social preference-avoidance test.

    3.  Behavioral differences in tree shrews and mice between target-absent and target-present trials in social preference-avoidance test

    A: Comparison of total distance moved in compartment when target (novel tree shrew or mouse) is absent or present during 30 min sample period (first 15 min session: No target; second 15 min session: Target) and every 5 min. Heatmaps show total distance traveled in successive 1 min bins in social preference-avoidance test over a 30 min period for each tree shrew and mouse. B: In first 3 min of 15 min session, tree shrews demonstrated greater moving distances when target was absent than when target was present. C: Significant differences in total traveling distance in mice were found in first 6 min of 15 min session. D: Total cumulative duration of movement (moving) of tree shrews and mice in compartment during 30 min sample period and every 5 min. Heatmaps show total duration of movement (moving) of tree shrews and mice in successive 1 min bins. E, F: Cumulative duration of movement over time by tree shrews and mice from starting point through 15 min of each session. Values are means±SEM (tree shrew: n=19; mouse: n=23). Significant differences are indicated by *: P<0.05; **: P<0.01; #: P<0.05; ##: P<0.01; $: P<0.05; $$: P<0.01 (*: No target vs. target; #: Significantly different among target0-5 min, target5-10 min, and target10-15 min; $: Significantly different among no target0-5 min, no target5-10 min, and no target10-15 min).

    4.  Behavioral differences in tree shrews and mice between target-absent and target-present trials in social preference-avoidance test

    A: Distance moved in social interaction (SI) zone when target is absent or present during 30 min social preference-avoidance test and every 5 min. Heatmaps show locomotor activity expressed as distance moved by each tree shrew and mouse in SI zone in successive 1 min bins. B: Experimental tree shrews showed higher motor activity from 2 min to 6 min when target animals were absent (target-absent vs. target-present). C: Experimental mice showed higher motor activity from 1 min to 14 min when target animals were present. D, E: Cumulative duration of movement (moving) of tree shrews and mice in SI zone during 30 min sample period and every 5 min. Values are means±SEM (tree shrew: n=19; mouse: n=23). Significant differences are indicated by *: P<0.05; **: P<0.01; #: P<0.05; $$: P<0.01 (*: No target vs. target; #: Significantly different among target0-5 min, target5-10 min, and target10-15 min; $: Significantly different among no target0-5 min, no target5-10 min, and no target10-15 min).

    5.  Behavioral differences in tree shrews and mice between target-absent and target-present trials

    A: Comparison of time spent by tree shrews and mice in social interaction (SI) zone during 30 min social preference-avoidance test and every 5 min. Heatmaps show time spent by each tree shrew and mouse in SI zone in successive 1 min bins. B: Experimental tree shrews showed lower cumulative duration spent in SI zone from 2 min to 15 min when target animals were present. C: Experimental mice showed higher cumulative duration spent in SI zone during second 15 min session (target-present) than during first 15 min session. D: Latency to enter SI zone of tree shrews and mice during 30 min sample period. Heatmaps show latency to enter SI zone of tree shrews and mice over 30 min period (target-absent and target-present sessions) in successive 1 min bins. E: Experimental tree shrews showed significantly longer latency to enter SI zone in second 15 min session (target-present) than in first 15 min session (target-absent). F: Experimental mice showed significantly shorter latency to enter SI zone when target mice were present. Values are means±SEM (tree shrew: n=19; mouse: n=23). Significant differences are indicated by *: P<0.05; **: P<0.01; ##: P<0.01; $$: P<0.01 (*: No target vs. target; #: Significantly different among target0-5 min, target5-10 min, and target10-15 min; $: Significantly different among no target0-5 min, no target5-10 min, and no target10-15 min).

    Figure  6.  Behavioral differences in tree shrews and mice between target-absent and target-present trials

    A, B: Comparison of frequency of entrances in social interaction (SI) zone when target (novel tree shrew or mouse) is absent or present during 30 min social preference-avoidance test and every 5 min. C: In tree shrews, target animals significantly decreased cumulative frequency of entrances in SI zone from 2 min to 4 min. D: Cumulative frequency of entrances of mice significantly increased in first 6 min of second session. Values are means±SEM (tree shrew: n=19; mouse: n=23). Significant differences are indicated by *: P<0.05; **: P<0.01; #: P<0.05; $$: P<0.01 (*: No target vs. target; #: Significantly different among target0-5 min, target5-10 min, and target10-15 min; $: Significantly different among no target0-5 min, no target5-10 min, and no target10-15 min).

    Table  1.   Mean, minimum, and maximum speeds of mice and tree shrews in open-field test (mean±SEM)

    Minimum (cm/s)Mean (cm/s)Maximum (cm/s)
    Mouse0.014±0.0024.683±0.28334.023±1.614
    Tree shrew03.851±0.514165.003±24.974
    下载: 导出CSV
  • [1] Anonymous]. 2001. Guidelines for the treatment of animals in behavioural research and teaching. Animal Behaviour, 61(1): 271−275. doi:  10.1006/anbe.2000.1652
    [2] Arakawa T, Tanave A, Ikeuchi S, Takahashi A, Kakihara S, Kimura S, Sugimoto H, Asada N, Shiroishi T, Tomihara K, Tsuchiya T, Koide T. 2014. A male-specific QTL for social interaction behavior in mice mapped with automated pattern detection by a hidden Markov model incorporated into newly developed freeware. Journal of Neuroscience Methods, 234: 127−134. doi:  10.1016/j.jneumeth.2014.04.012
    [3] Bales KL, Solomon M, Jacob S, Crawley JN, Silverman JL, Larke RH, Sahagun E, Puhger KR, Pride MC, Mendoza SP. 2014. Long-term exposure to intranasal oxytocin in a mouse autism model. Translational Psychiatry, 4(11): e480. doi:  10.1038/tp.2014.117
    [4] Bartal IBA, Decety J, Mason P. 2011. Empathy and pro-social behavior in rats. Science, 334(6061): 1427−1430. doi:  10.1126/science.1210789
    [5] Basu P, Masters B, Patel B, Urban O. 1993. Food safety and inspection service update on food safety of animals derived from biotechnology experiments. Journal of Animal Science, 71(S3): 41−42.
    [6] Bauman MD, Iosif AM, Ashwood P, Braunschweig D, Lee A, Schumann CM, Van De Water J, Amaral DG. 2013. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Translational Psychiatry, 3(7): e278. doi:  10.1038/tp.2013.47
    [7] Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ. 2006. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 311(5762): 864−868. doi:  10.1126/science.1120972
    [8] Brodkin ES, Hagemann A, Nemetski SM, Silver LM. 2004. Social approach-avoidance behavior of inbred mouse strains towards DBA/2 mice. Brain Research, 1002(1–2): 151−157.
    [9] Buijs RM, Ruiz MAG, Hernández RM, Cortés BR. 2019. The suprachiasmatic nucleus; a responsive clock regulating homeostasis by daily changing the setpoints of physiological parameters. Autonomic Neuroscience, 218: 43−50. doi:  10.1016/j.autneu.2019.02.001
    [10] Deboer T, Vansteensel MJ, Détári L, Meijer JH. 2003. Sleep states alter activity of suprachiasmatic nucleus neurons. Nature Neuroscience, 6(10): 1086−1090. doi:  10.1038/nn1122
    [11] Ey E, Yang M, Katz AM, Woldeyohannes L, Silverman JL, Leblond CS, Faure P, Torquet N, Le Sourd AM, Bourgeron T, Crawley JN. 2012. Absence of deficits in social behaviors and ultrasonic vocalizations in later generations of mice lacking neuroligin4. Genes, Brain and Behavior, 11(8): 928−941.
    [12] Fan Y, Huang ZY, Cao CC, Chen CS, Chen YX, Fan DD, He J, Hou HL, Hu L, Hu XT, Jiang XT, Lai R, Lang YS, Liang B, Liao SG, Mu D, Ma YY, Niu YY, Sun XQ, Xia JQ, Xiao J, Xiong ZQ, Xu L, Yang L, Zhang Y, Zhao W, Zhao XD, Zheng YT, Zhou JM, Zhu YB, Zhang GJ, Wang J, Yao YG. 2013. Genome of the Chinese tree shrew. Nature Communications, 4: 1426. doi:  10.1038/ncomms2416
    [13] Fan Y, Ye MS, Zhang JY, Xu L, Yu DD, Gu TL, Yao YL, Chen JQ, Lv LB, Zheng P, Wu DD, Zhang GJ, Yao YG. 2019. Chromosomal level assembly and population sequencing of the Chinese tree shrew genome. Zoological Research, 40(6): 506−521. doi:  10.24272/j.issn.2095-8137.2019.063
    [14] Fang H, Sun YJ, Lv YH, Ni RJ, Shu YM, Feng XY, Wang Y, Shan QH, Zu YN, Zhou JN. 2016. High activity of the stress promoter contributes to susceptibility to stress in the tree shrew. Scientific Reports, 6: 24905. doi:  10.1038/srep24905
    [15] Farrell MR, Holland FH, Shansky RM, Brenhouse HC. 2016. Sex-specific effects of early life stress on social interaction and prefrontal cortex dendritic morphology in young rats. Behavioural Brain Research, 310: 119−125. doi:  10.1016/j.bbr.2016.05.009
    [16] Fischer HD, Heinzeller T, Raab A. 1985. Gonadal response to psychosocial stress in male tree shrews (Tupaia belangeri) morphometry of testis, epididymis and prostate. Andrologia, 17(3): 262−275.
    [17] Fuchs E, Schumacher M. 1990. Psychosocial stress affects pineal function in the tree shrew (Tupaia belangeri). Physiology & Behavior, 47(4): 713−717.
    [18] Fuchs E, Jöhren O, Flügge G. 1993. Psychosocial conflict in the tree shrew: effects on sympathoadrenal activity and blood pressure. Psychoneuroendocrinology, 18(8): 557−565. doi:  10.1016/0306-4530(93)90033-H
    [19] Fuchs E, Uno H, Flugge G. 1995. Chronic psychosocial stress induces morphological alterations in hippocampal pyramidal neurons of the tree shrew. Brain Research, 673(2): 275−282. doi:  10.1016/0006-8993(94)01424-G
    [20] Fuchs E. 2005. Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectrums, 10(3): 182−190. doi:  10.1017/S1092852900010038
    [21] Glass JD, Grossman GH, Farnbauch L, Dinardo L. 2003. Midbrain raphe modulation of nonphotic circadian clock resetting and 5-HT release in the mammalian suprachiasmatic nucleus. Journal of Neuroscience, 23(20): 7451−7460. doi:  10.1523/JNEUROSCI.23-20-07451.2003
    [22] Golden SA, Covington III HE, Berton O, Russo SJ. 2011. A standardized protocol for repeated social defeat stress in mice. Nature Protocols, 6(8): 1183−1191. doi:  10.1038/nprot.2011.361
    [23] Goodson JL, Lindberg L, Johnson P. 2004. Effects of central vasotocin and mesotocin manipulations on social behavior in male and female zebra finches. Hormones and Behavior, 45(2): 136−143. doi:  10.1016/j.yhbeh.2003.08.006
    [24] Green J, Collins C, Kyzar EJ, Pham M, Roth A, Gaikwad S, Cachat J, Stewart AM, Landsman S, Grieco F, Tegelenbosch R, Noldus LPJJ, Kalueff AV. 2012. Automated high-throughput neurophenotyping of zebrafish social behavior. Journal of Neuroscience Methods, 210(2): 266−271. doi:  10.1016/j.jneumeth.2012.07.017
    [25] Guillen J. 2017. Laboratory Animals: Regulations and Recommendations for the Care and Use of Animals in Research. 2nd ed. London: Academic Press.
    [26] Haller J, Bakos N. 2002. Stress-induced social avoidance: a new model of stress-induced anxiety?. Physiology & Behavior, 77(2–3): 327−332.
    [27] Hefner K, Cameron HA, Karlsson RM, Holmes A. 2007. Short-term and long-term effects of postnatal exposure to an adult male in C57BL/6J mice. Behavioural Brain Research, 182(2): 344−348. doi:  10.1016/j.bbr.2007.03.032
    [28] Henriques-Alves AM, Queiroz CM. 2016. Ethological evaluation of the effects of social defeat stress in mice: beyond the social interaction ratio. Frontiers in Behavioral Neuroscience, 9: 364.
    [29] Hery M, Dusticier G, Faudon M, Barrit MC, Héry F. 1981. Kinetic study of serotonin metabolism in the suprachiasmatic nucleus of the rat: neuroendocrine incidence (author's transl)]. Journal de Physiologie, 77(2–3): 497−500.
    [30] Holst DV. 1977. Social stress in tree-shrews: problems, results, and goals. Journal of Comparative Physiology, 120: 71−86. doi:  10.1007/BF00617538
    [31] Houwing DJ, Heijkoop R, Olivier JDA, Snoeren EMS. 2019. Perinatal fluoxetine exposure changes social and stress-coping behavior in adult rats housed in a seminatural environment. Neuropharmacology, 151: 84−97. doi:  10.1016/j.neuropharm.2019.03.037
    [32] Huang ZH, Ni RJ, Luo PH, Zhou JN. 2020. Distribution of tyrosine-hydroxylase-immunoreactive neurons in the hypothalamus of tree shrews. The Journal of Comparative Neurology, 528(6): 935−952. doi:  10.1002/cne.24803
    [33] Hubrecht R, Kirkwood J. 2010. The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals. 8th ed. Ames: Universities Federation for Animal Welfare, 262–275.
    [34] Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR. 2011. Assessment of social interaction behaviors. Journal of Visualized Experiments, (48): 2473.
    [35] Kawamichi T, Kawamichi M. 1979. Spatial organization and territory of three shrews (Tupaia glis). Animal Behaviour, 27: 381−393. doi:  10.1016/0003-3472(79)90173-8
    [36] Khani A, Rainer G. 2012. Recognition memory in tree shrew (Tupaia belangeri) after repeated familiarization sessions. Behavioural Processes, 90(3): 364−371. doi:  10.1016/j.beproc.2012.03.019
    [37] Li AF, Jing DQ, Dellarco DV, Hall BS, Yang RR, Heilberg RT, Huang CC, Liston C, Casey BJ, Lee FS. 2019. Role of BDNF in the development of an OFC-amygdala circuit regulating sociability in mouse and human. Molecular Psychiatry. doi:  10.1038/s41380-019-0422-4.
    [38] Lopes PC. 2014. When is it socially acceptable to feel sick?. Proceedings of the Royal Society B: Biological Sciences, 281(1788): 20140218. doi:  10.1098/rspb.2014.0218
    [39] Lukas M, Toth I, Reber SO, Slattery DA, Veenema AH, Neumann ID. 2011. The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacology, 36(11): 2159−2168. doi:  10.1038/npp.2011.95
    [40] Magariños AM, Mcewen BS, Flügge G, Fuchs E. 1996. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. Journal of Neuroscience, 16(10): 3534−3540. doi:  10.1523/JNEUROSCI.16-10-03534.1996
    [41] Meng FT, Zhao J, Fang H, Liu YJ. 2015. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice. Stress, 18(4): 419−426. doi:  10.3109/10253890.2015.1040986
    [42] Meng XL, Shen F, Li CL, Li YH, Wang XW. 2016. Depression-like behaviors in tree shrews and comparison of the effects of treatment with fluoxetine and carbetocin. Pharmacology Biochemistry and Behavior, 145: 1−8. doi:  10.1016/j.pbb.2016.03.006
    [43] Mikics E, Tóth M, Varjú P, Gereben B, Liposits Z, Ashaber M, Halász J, Barna I, Farkas I, Haller J. 2008. Lasting changes in social behavior and amygdala function following traumatic experience induced by a single series of foot-shocks. Psychoneuroendocrinology, 33(9): 1198−1210. doi:  10.1016/j.psyneuen.2008.06.006
    [44] Moga MM, Moore RY. 1997. Organization of neural inputs to the suprachiasmatic nucleus in the rat. The Journal of Comparative Neurology, 389(3): 508−534. doi:  10.1002/(SICI)1096-9861(19971222)389:3<508::AID-CNE11>3.0.CO;2-H
    [45] Monclús R, Saavedra I, de Miguel J. 2014. Context-dependent responses to neighbours and strangers in wild European rabbits (Oryctolagus cuniculus). Behavioural Processes, 106: 17−21. doi:  10.1016/j.beproc.2014.04.004
    [46] Nair J, Topka M, Khani A, Isenschmid M, Rainer G. 2014. Tree shrews (Tupaia belangeri) exhibit novelty preference in the novel location memory task with 24-h retention periods. Frontiers in Psychology, 5: 303.
    [47] Ni RJ, Huang ZH, Luo PH, Ma XH, Li T, Zhou JN. 2018. The tree shrew cerebellum atlas: systematic nomenclature, neurochemical characterization, and afferent projections. The Journal of Comparative Neurology, 526(17): 2744−2775. doi:  10.1002/cne.24526
    [48] Ni RJ, Wang J, Shu YM, Xu L, Zhou JN. 2020. Mapping of c-Fos expression in male tree shrew forebrain. Neuroscience Letters, 714: 134603. doi:  10.1016/j.neulet.2019.134603
    [49] Ogden BE, Pang WY, Agui T, Lee BH. 2016. Laboratory animal laws, regulations, guidelines and standards in China Mainland, Japan, and Korea. ILAR Journal, 57(3): 301−311.
    [50] Parésys L, Hoffmann K, Froger N, Bianchi M, Villey I, Baulieu EE, Fuchs E. 2016. Effects of the synthetic neurosteroid: 3β-methoxypregnenolone (MAP4343) on behavioral and physiological alterations provoked by chronic psychosocial stress in tree shrews. International Journal of Neuropsychopharmacology, 19(4): pyv119. doi:  10.1093/ijnp/pyv119
    [51] Pfaff D, Barbas H. 2019. Mechanisms for the approach/avoidance decision applied to autism. Trends in Neurosciences, 42(7): 448−457. doi:  10.1016/j.tins.2019.05.002
    [52] Pryce CR, Fuchs E. 2017. Chronic psychosocial stressors in adulthood: studies in mice, rats and tree shrews. Neurobiology of Stress, 6: 94−103. doi:  10.1016/j.ynstr.2016.10.001
    [53] Raab A, Storz H. 1976. A long term study on the impact of sociopsychic stress in tree-shrews (Tupaia belangeri) on central and peripheral tyrosine hydroxylase activity. Journal of Comparative Physiology, 108(2): 115−131. doi:  10.1007/BF02169044
    [54] Raymond JS, Wilson BB, Tan O, Gururajan A, Bowen MT. 2019. Acute alcohol exposure dose-dependently alleviates social avoidance in adolescent mice and inhibits social investigation in adult mice. Psychopharmacology, 236(12): 3625−3639. doi:  10.1007/s00213-019-05335-8
    [55] Schehka S, Esser KH, Zimmermann E. 2007. Acoustical expression of arousal in conflict situations in tree shrews (Tupaia belangeri). Journal of Comparative Physiology A, 193(8): 845−852. doi:  10.1007/s00359-007-0236-8
    [56] Seibenhener ML, Wooten MC. 2015. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. Journal of Visualized Experiments, (96): e52434.
    [57] Taugner R, Forssmann WG, Ganten D, Schiller A. 1980. Studies on the juxtaglomerular apparatus VI. Sympathetic innervation, catecholamines and the renin-angiotensin-system in rats and tree-shrews (Tupaia belangeri). Cell and Tissue Research, 212(3): 375−382.
    [58] Toth I, Neumann ID. 2013. Animal models of social avoidance and social fear. Cell and Tissue Research, 354(1): 107−118. doi:  10.1007/s00441-013-1636-4
    [59] van Dongen WFD. 2008. Mate guarding and territorial aggression vary with breeding synchrony in golden whistlers (Pachycephala pectoralis). Naturwissenschaften, 95(6): 537−545. doi:  10.1007/s00114-008-0356-1
    [60] Vandenbergh JG. 1963. Feeding, activity and social behavior of the tree shrew, Tupaia glis, in a large outdoor enclosure. Folia Primatologica, 1(3–4): 199−207.
    [61] Wang J, Zhou QX, Tian M, Yang YX, Xu L. 2011. Tree shrew models: a chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory. Zoological Research, 32(1): 24−30.
    [62] Wang J, Chai AP, Zhou QX, Lv LB, Wang LP, Yang YX, Xu L. 2013. Chronic clomipramine treatment reverses core symptom of depression in subordinate tree shrews. PLoS One, 8(12): e80980. doi:  10.1371/journal.pone.0080980
    [63] Xiao J, Liu R, Chen CS. 2017. Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model. Zoological Research, 38(3): 127−137. doi:  10.24272/j.issn.2095-8137.2017.033
    [64] Xu HF, Liu L, Tian YY, Wang J, Li J, Zheng JQ, Zhao HF, He M, Xu TL, Duan SM, Xu H. 2019. A disinhibitory microcircuit mediates conditioned social fear in the prefrontal cortex. Neuron, 102(3): 668−682. doi:  10.1016/j.neuron.2019.02.026
    [65] Yao YG. 2017. Creating animal models, why not use the Chinese tree shrew (Tupaia belangeri chinensis)?. Zoological Research, 38(3): 118−126. doi:  10.24272/j.issn.2095-8137.2017.032
    [66] Yoshida K, McCormack S, España RA, Crocker A, Scammell TE. 2006. Afferents to the orexin neurons of the rat brain. The Journal of Comparative Neurology, 494(5): 845−861. doi:  10.1002/cne.20859
    [67] Zheng YT, Yao YG, Xu L. 2014. Basic Biology and Disease Models of Tree Shrews. Kunming, Yunnan: Science and Technology Press. (in Chinese)
  • [1] Long-Wu Wang, Guo Zhong, Gang-Bin He, Yu-Han Zhang, Wei Liang.  Egg laying behavior of common cuckoos (Cuculus canorus): Data based on field video-recordings, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.021
    [2] You-Ji Zhang, Yi-Xin Chen, Hao-Chun Chen, Yuan Chen, Hui Yao, Wan-Ji Yang, Xiang-Dong Ruan, Zuo-Fu Xiang.  Social functions of relaxed open-mouth display in golden snub-nosed monkeys (Rhinopithecus roxellana), Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.043
    [3] Kaitlin R. Wright, Jessica A. Mayhew, Lori K. Sheeran, Jake A. Funkhouser, Ronald. S. Wagner, Li-Xing Sun, Jin-Hua Li.  Playing it cool: Characterizing social play, bout termination, and candidate play signals of juvenile and infant Tibetan macaques (Macaca thibetana) , Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.048
    [4] Yan-Hong Xiao, Lei Wang, Joseph R. Hoyt, Ting-Lei Jiang, Ai-Qing Lin, Jiang Feng.  Stereotypy and variability of social calls among clustering female big-footed myotis (Myotis macrodactylus), Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.026
    [5] Zhen-Hua Guan, Chang-Yong Ma, Han-Lan Fei, Bei Huang, Wen-He Ning, Qing-Yong Ni, Xue-Long Jiang, Peng-Fei Fan.  Ecology and social system of northern gibbons living in cold seasonal forests, Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.045
    [6] Bo ZHAN, Hong-Yuan MA, Jian-Li WANG, Chao-Bao LIU.  Sex differences in morphine-induced behavioral sensitization and social behaviors in ICR mice, Zoological Research.
    [7] Ding CUI, Yuan ZHOU.  Stress-relevant social behaviors of middle-class male cynomolgus monkeys (Macaca fascicularis), Zoological Research. doi: 10.13918/j.issn.2095-8137.2015.6.337
    [8] Ying-Chun LI, Feng LIU, Xiao-Yang HE, Chi MA, Jun SUN, Dong-Hui LI, Wen XIAO, Liang-Wei CUI.  Social organization of Shortridge's capped langur (Trachypithecus shortridgei) at the Dulongjiang Valley in Yunnan, China, Zoological Research.
    [9] Liang-Wei CUI, Qing-Lei SUN, Bao-Guo LI.  Dominance hierarchy and social relationships in a group of captive black-and-white snub-nosed monkeys (Rhinopithecus bieti), Zoological Research. doi: 10.11813/j.issn.0254-5853.2014.3.204
    [10] Jian-Li WANG, Bei WANG, Wen CHEN.  Differences in cocaine-induced place preference persistence, locomotion and social behaviors between C57BL/6J and BALB/cJ mice, Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.5.426
    [11] Peng ZHANG.  Social network analysis of animal behavioral ecology: a cross-discipline approach, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.6.0651
    [12] Dong-Dong QIN, Joshua Dominic Rizak, Xiao-Li FENG, Xun-Xun CHU, Shang-Chuan YANG, Chun-Lu LI, Long-Bao LV, Yuan-Ye MA, Xin-Tian HU.  Social rank and cortisol among female rhesus macaques (Macaca mulatta), Zoological Research. doi: 10.3724/SP.J.1141.2013.E02E42
    [13] WANG Jing, ZHOU Qi-Xin, LÜ Long-Bao, XU Lin, YANG Yue-Xiong.  A depression model of social defeat etiology using tree shrews, Zoological Research. doi: 10.3724/SP.J.1141.2012.01092
    [14] WANG Jing, ZHOU Qi-Xin, TIAN Men, YANG Yue-Xiong, XU Lin.  Tree shrew models: A chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory, Zoological Research. doi: 10.3724/SP.J.1141.2011.01024
    [15] DAI Qiang, ZHANG Zheng-Wang, QIU Fu-Cai, GUO Jian-Rong.  Social Hierarchy of the Brown Eared Pheasants Crossoptilon mantchuricum in Captivity During Winter, Zoological Research.
    [16] LI Dong-feng, LI Jie.  The Hormonal Regulation of Vocal Behavior in Songbirds, Zoological Research.
    [17] ZHAO Qi-kun.  Ecological Selection of Primate Social Behavior, Zoological Research.
    [18] Edmund D.Brodie, Jr, Ronald A.Nussbaum, YANG Da-tong.  Antipredator Behavior of Chinese Salamanders (Salamandridae), Zoological Research.
    [19] Fang congyi, Liu cheng, Qi huixin, Zheng jianbiao, Chen ling, Xu huiming, Xiang zhongming, Song benbo.  The hippocampal formation and learning and memory of dark avoidance behavior in rats IV. effects of colchicine microinjected into various parts of hippocampal formation, Zoological Research.
    [20] HUANG Wei-liang, RAO Qi-zhen, LU Li-mei.  The Action of the Social Behaviour of the Initial Colony of Two Termites on Oviposition,Egg Hatching and Moulting, Zoological Research.
  • ZR-2019-178-Supplement_Figur S1.doc
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  2032
  • HTML全文浏览量:  244
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-01
  • 录用日期:  2020-03-23
  • 网络出版日期:  2020-03-23
  • 刊出日期:  2020-05-18

目录

    /

    返回文章
    返回