留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Genetic diversity and reproductive success of a wild population of Chinese sturgeon (Acipenser sinensis) from the Yangtze River inferred from juveniles born in 2014

Zhong-Yuan Shen Dan Yu Xin Gao Fu-Tie Zhang Huan-Zhang Liu

Zhong-Yuan Shen, Dan Yu, Xin Gao, Fu-Tie Zhang, Huan-Zhang Liu. Genetic diversity and reproductive success of a wild population of Chinese sturgeon (Acipenser sinensis) from the Yangtze River inferred from juveniles born in 2014. Zoological Research, 2020, 41(4): 423-430. doi: 10.24272/j.issn.2095-8137.2020.011
Citation: Zhong-Yuan Shen, Dan Yu, Xin Gao, Fu-Tie Zhang, Huan-Zhang Liu. Genetic diversity and reproductive success of a wild population of Chinese sturgeon (Acipenser sinensis) from the Yangtze River inferred from juveniles born in 2014. Zoological Research, 2020, 41(4): 423-430. doi: 10.24272/j.issn.2095-8137.2020.011

基于2014世代幼鲟分析的中华鲟种群遗传多样性及个体繁殖策略研究

doi: 10.24272/j.issn.2095-8137.2020.011

Genetic diversity and reproductive success of a wild population of Chinese sturgeon (Acipenser sinensis) from the Yangtze River inferred from juveniles born in 2014

Funds: This study was funded by the National Key R & D Program of China (2018YFD0900801); Strategic Priority Research Program of Chinese Academy of Sciences (XDB31040000); Follow-Up Work of the Three Gorges Project (2136902); and Sino BON-Inland Water Fish Diversity Observation Network
More Information
  • 摘要:

    中华鲟(Acipenser sinensis Gray,1835)是一种大型的溯河洄游性鱼类,近年来其野生种群数量急剧下,降对该物种的生存造成了严重威胁。该研究以2014年出生的幼鲟为对象,利用微卫星标记(SSR)、线粒体(mtDNA)全基因组数据对野生中华鲟的种群遗传多样性和个体繁殖成功率进行了分析。结果表明,中华鲟mtDNA基因组序列在不同个体间存在由一个重复片段引起的长度多态性。中华鲟野生种群的遗传多样性较高,基于SSR的观测杂合度为0.728±0.211,期望杂合度为 0.779±0.122;基于mtDNA基因组数据的单倍型多样性为 0.876±0.0035,核苷酸多样性为 0.0011±0.0010。近交系数估算表明中华鲟繁殖群体可能存在近交(FIS: 0.066±0.143)。基于同胞关系重建发现,2014年共有11尾母本和11尾父本参与了当年的繁殖活动。推测的亲本繁殖成功率相对均匀(P=0.997>0.05),个体间繁殖成功差异不显著,而不是个体间差别显著的 “彩票中奖式” 繁殖策略。因此,在制定中华鲟保护对策时,不需要考虑因“彩票中奖式”繁殖策略所导致的低遗传多样性。建议对中华鲟的保护需要放流足够数量的可繁殖亲鱼,同时对产卵场的环境进行保护,以确保其能够成功繁殖。

  • Figure  1.  Phylogenetic tree based on SSR and mtDNA genome data using two methods

    A: Phylogenetic tree based on 21 microsatellite loci data using unweighted pair-group method; B: Maximum-likelihood phylogenetic tree based on mtDNA genome sequences of juvenile Chinese sturgeons.

    Table  1.   Summary statistics for complete mitochondrial genome in Chinese sturgeon juveniles

    HaplotypeSample IDSample No. (n)GenBank accession Nos.
    H1Y131MT272689
    H2Y2, Y5, Y7, Y124MT272690
    H3Y91MT276291
    H4Y1, Y8, Y14, Y154MT276292
    H5Y61MT276293
    H6Y3, Y42MT276294
    H7Y101MT276295
    H8Y111MT276296
    下载: 导出CSV

    Table  2.   Marker information for 21 microsatellite loci analyzed in Chinese sturgeon

    LocusAAiGHoHeFISPIC
    Afu-68103.133120.7890.8360.0560.818
    AS-03392.400120.6220.7180.1330.687
    AS-035111.933130.5220.8340.3740.815
    AS-10292.267150.6110.8320.2660.812
    AS02-782.933120.7330.711-0.0310.683
    AS-04872.200110.5560.7590.2680.726
    AS-05042.33380.6780.613-0.1060.534
    H42362.66790.7780.743-0.0460.703
    Spl-100113.600140.9330.874-0.0670.862
    AS01-4123.333150.8890.873-0.0180.860
    AS03-1383.667120.9330.822-0.1360.799
    AS08-2392.733120.6440.7190.1040.689
    AS14-48133.667150.9440.879-0.0750.867
    AS16-5341.46760.2560.4860.4740.409
    Afu-1931.53370.3220.4820.3310.432
    AS06-20103.800130.9670.861-0.1230.846
    AS09-3893.800130.9560.851-0.1230.833
    AS-018122.400150.7000.8780.2030.866
    AS-043102.200130.5670.8570.3390.842
    AS-082103.533130.9110.877-0.0390.865
    AS11-43103.867140.9780.864-0.1320.849
    Means:8.812.83212.0950.7280.7790.0660.752
    StDev:2.7130.7722.6060.2110.1220.1430.140
    A: Number of alleles at locus; Ai: Average number of alleles per individual at locus; G: Number of four allele genotypes at locus; Ho: Observed heterozygosity at locus; He: Expected heterozygosity; FIS: Fixation coefficients calculated as 1–(Ho/He); PIC: Polymorphism information content.
    下载: 导出CSV

    Table  3.   Information on pedigree based on sibling relationships in wild juvenile Chinese sturgeon

    PedSample IDProb (Inc.)Prob (Exc.)Father IDMother ID
    P1Y1, Y150.57920.1870F1M1
    P2Y21.00000.2038F2M2
    P3Y3, Y40.96140.8860F3M3
    P4Y5, Y70.34490.2400F4M4
    P5Y61.00000.1183F5M5
    P6Y8, Y140.65460.3053F6M6
    P7Y91.00000.2170F7M7
    P8Y101.00000.8552F8M8
    P9Y111.00000.7014F9M9
    P10Y121.00000.5750F10M10
    P11Y131.00000.8168F11M11
    Ped: Pedigree index; Sample ID: IDs of all offspring members of this pedigree; Prob (Inc.): Inclusive probabilities of this pedigree; Prob (Exc.): Exclusive probabilities of this pedigree; Father ID: Candidate father ID in this pedigree; Mother ID: Candidate mother ID in this pedigree.
    下载: 导出CSV

    Table  4.   Parameters of significance tests among parents with two offspring and one offspring, and uniformity test between parent and offspring

    Statistical methodNX2P
    Significance test between parent with different offspring110.8180.366
    Uniformity test between parent and offspring151.8760.977
    N: Number of samples analyzed in two statistical methods; X2: Test statistic Chi-square value; P: Probability of test significance and uniformity.
    下载: 导出CSV
  • [1] Aljanabi SM, Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25(22): 4692−4693. doi:  10.1093/nar/25.22.4692
    [2] Bentzen P, Brown GC, Leggett WC. 1989. Mitochondrial DNA polymorphism, population structure, and life history variation in American shad (Alosa sapidissima). Canadian Journal of Fisheries and Aquatic Sciences, 46(8): 1446−1454. doi:  10.1139/f89-184
    [3] Bermingham E, Lamb T, Avise JC. 1986. Size polymorphism and heteropiasmy in the mitochondrial DNA of lower vertebrates. Journal of Heredity, 77(4): 249−252. doi:  10.1093/oxfordjournals.jhered.a110230
    [4] Brook BW, Tonkyn DW, O’Grady JJ, Frankham R. 2002. Contribution of inbreeding to extinction risk in threatened species. Conservation Ecology, 6(1): 16. doi:  10.5751/ES-00387-060116
    [5] Brown JR, Beckenbach AT, Smith MJ. 1992. Mitochondrial DNA length variation and Heteroplasmy in populations of white sturgeon (Acipenser transmontanus). Genetics, 132(1): 221−228.
    [6] Burland T G. 2001. DNASTAR's Lasergene sequence analysis software. Methods in Molecular Biology, 132: 71−79.
    [7] Chang T, Lin PC, Gao X, Liu F, Duan ZH, Liu HZ. 2017. Using adaptive resolution imaging sonar to investigate Chinese sturgeon (Acipenser sinensis Gray, 1835) behaviour on its only spawning ground in the Yangtze River. Journal of Applied Ichthyology, 33(4): 681−688. doi:  10.1111/jai.13406
    [8] Christie MR, Marine ML, French RA, Blouin MS. 2012. Genetic adaptation to captivity can occur in a single generation. Proceedings of the National Academy of Sciences of the United States of America, 109(1): 238−242. doi:  10.1073/pnas.1111073109
    [9] da Paz Aguiar J, Gomes PFF, Hamoy IG, dos Santos SEB, Schneider H, Sampaio I. 2018. Loss of genetic variability in the captive stocks of tambaqui, Colossoma macropomum (Cuvier, 1818), at breeding centres in Brazil, and their divergence from wild populations. Aquaculture Research, 49(5): 1914−1925. doi:  10.1111/are.13647
    [10] Dai ZJ, Liu JT, Wei Q, Chen JY. 2014. Detection of the three gorges dam influence on the Changjiang (Yangtze River) submerged delta. Scientific Reports, 4: 6600.
    [11] de Sá Teles Oliveira C, Moreira RFC, Filho AAS, Fonteles SBA, Evangelista-Barreto NS. 2019. Genetic diversity in natural populations of Colossomamacropomum in the Brazilian Amazon region and in populations farmed in Northeast Brazil based on ISSR markers. Aquaculture International, 27(5): 1423−1434. doi:  10.1007/s10499-019-00395-1
    [12] Fopp-Bayat D. 2010. Microsatellite DNA variation in the Siberian sturgeon, Acipenser baeri (Actinopterygii, Acipenseriformes, Acipenseridae), Cultured in a Polish fish Farm. Acta Ichthyologica et Piscatoria, 40(1): 21−25. doi:  10.3750/AIP2010.40.1.03
    [13] Frankham R. 1995. Effective population size/adult population size ratios in wildlife: a review. Genetics Research, 66(2): 95−107. doi:  10.1017/S0016672300034455
    [14] Galtier N, Gouy M, Gautier C. 1996. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Bioinformatics, 12(6): 543−548. doi:  10.1093/bioinformatics/12.6.543
    [15] Gao X, Brosse S, Chen YB, Lek S, Chang JB. 2009. Effects of damming on population sustainability of Chinese sturgeon, Acipenser sinensis: evaluation of optimal conservation measures. Environmental Biology of Fishes, 86(2): 325−336. doi:  10.1007/s10641-009-9521-4
    [16] Gao X, Lin PC, Li MZ, Duan ZH, Liu HZ. 2016. Impact of the Three Gorges Dam on the spawning stock and natural reproduction of Chinese sturgeon in Changjiang River, China. Chinese Journal of Oceanology and Limnology, 34(5): 894−901. doi:  10.1007/s00343-016-5027-z
    [17] Garant D, Dodson JJ, Bernatchez L. 2001. Genetic evaluation of mating system and determinants of individual reproductive success in Atlantic Salmon (Salmo salar L.). Journal of Heredity, 92(2): 137−145. doi:  10.1093/jhered/92.2.137
    [18] Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P. 2014. Using genomics to characterize evolutionary potential for conservation of wild populations. Evolutionary Applications, 7(9): 1008−1025. doi:  10.1111/eva.12149
    [19] Hedgecock D. 1994. Does variance in reproductive success limit effective population size of marine organisms?. In: Beaumont A. Genetics and Evolution of Aquatic Organisms. London: Chapman and Hall.
    [20] Hedgecock D, Pudovkin AI. 2011. Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bulletin of Marine Science, 87(4): 971−1002. doi:  10.5343/bms.2010.1051
    [21] Hedrick P. 2005. Large variance in reproductive success and the Ne/N ratio. Evolution, 59(7): 1596−1599. doi:  10.1111/j.0014-3820.2005.tb01809.x
    [22] Jones AT, Lavery SD, Le Port A, Wang YG, Blower D, Ovenden J. 2019. Sweepstakes reproductive success is absent in a New Zealand snapper (Chrysophrus auratus) population protected from fishing despite “tiny” Ne/N ratios elsewhere. Molecular Ecology, 28(12): 2986−2995. doi:  10.1111/mec.15130
    [23] Jones OR, Wang JL. 2010. COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10(3): 551−555. doi:  10.1111/j.1755-0998.2009.02787.x
    [24] Keller LF, Waller DM. 2002. Inbreeding effects in wild populations. Trends in Ecology & Evolution, 17(5): 230−241.
    [25] Kynard B, Wei QW, Ke FE. 1995. Use of ultrasonic telemetry to locate the spawning area of Chinese sturgeon. Chinese Science Bulletin, 40(8): 668−671.
    [26] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23(21): 2947−2948. doi:  10.1093/bioinformatics/btm404
    [27] Langella O. 2000. POPULATIONS 1.2: population genetic software, individuals or population distance, phylogenetic trees. http://bioinformatics.org/~tryphon/populations/.
    [28] Liao XL, Tian H, Zhu B, Chang JB. 2016. The complete mitochondrial genome of Chinese sturgeon (Acipenser sinensis). Mitochondrial DNA Part A, 27(1): 328−329. doi:  10.3109/19401736.2014.892101
    [29] Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451−1452. doi:  10.1093/bioinformatics/btp187
    [30] Luikart G, Allendorf FW, Cornuet JM, Sherwin WB. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity, 89(3): 238−247. doi:  10.1093/jhered/89.3.238
    [31] Maddison DR, Maddison WP. 2011[2016-03-10]. Mesquite: a modular system for evolutionary analysis. Current release version: 3.61. http://mesquiteproject.org.
    [32] Mitton JB. 1997. Selection in Natural Populations. Oxford: Oxford University Press.
    [33] Monnerot M, Mounolou JC, Solignac M. 1984. Intra-individual length heterogeneity of Rana esculenta mitochondrial DNA. Biology of the Cell, 52(3): 213−218.
    [34] Nagy S, Poczai P, Cernák I, Gorji AM, Hegedűs G, Taller J. 2012. PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochemical Genetics, 50(9–10): 670−672.
    [35] Reed DH, Frankham R. 2003. Correlation between fitness and genetic diversity. Conservation Biology, 17(1): 230−237. doi:  10.1046/j.1523-1739.2003.01236.x
    [36] Richard A, Dionne M, Wang JL, Bernatchez L. 2013. Does catch and release affect the mating system and individual reproductive success of wild Atlantic salmon (Salmo salar L.)?. Molecular Ecology, 22(1): 187−200. doi:  10.1111/mec.12102
    [37] Serbezov D, Bernatchez L, Olsen EM, Vøllestad LA. 2010. Mating patterns and determinants of individual reproductive success in brown trout (Salmo trutta) revealed by parentage analysis of an entire stream living population. Molecular Ecology, 19(15): 3193−3205. doi:  10.1111/j.1365-294X.2010.04744.x
    [38] Solignac M, Monnerot M, Mounolou JC. 1983. Mitochondrial DNA heteroplasmy in Drosophila mauritiana. Proceedings of the National Academy of Sciences of the United States of America, 80(22): 6942−6946. doi:  10.1073/pnas.80.22.6942
    [39] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725−2729. doi:  10.1093/molbev/mst197
    [40] Thorstensen M, Bates P, Lepla K, Schreier A. 2019. To breed or not to breed? Maintaining genetic diversity in white sturgeon supplementation programs. Conservation Genetics, 20(5): 997−1007. doi:  10.1007/s10592-019-01190-4
    [41] Thrall PH, Young A. 2000. Computer note. AUTOTET: a program for analysis of Autotetraploid genotypic data. Journal of Heredity, 91(4): 348−349. doi:  10.1093/jhered/91.4.348
    [42] Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3): 535−538. doi:  10.1111/j.1471-8286.2004.00684.x
    [43] Wang JL. 2004. Sibship reconstruction from genetic data with typing errors. Genetics, 166(4): 1963−1979. doi:  10.1534/genetics.166.4.1963
    [44] Waples RS. 2016. Tiny estimates of the Ne/N ratio in marine fishes: are they real?. Journal of Fish Biology, 89(6): 2479−2504. doi:  10.1111/jfb.13143
    [45] Waples RS, Grewe PM, Bravington MW, Hillary R, Feutry P. 2018. Robust estimates of a high Ne/N ratio in a top marine predator, southern bluefin tuna. Science Advances, 4(7): eaar7759. doi:  10.1126/sciadv.aar7759
    [46] Wei QW, Chen XH, Yang DG, Liu JY, Zhu YJ, Zheng WD. 2005. Variations in spawning stock structure of Acipenser sinensis within 24 years since damming of Gezhouba Dam. Journal of Fishery Sciences of China, 12(4): 452−457. (in Chinese)
    [47] Wei QW, Ke FE, Zhang JM, Zhuang P, Luo JD, Zhou RQ, Yang WH. 1997. Biology, fisheries, and conservation of sturgeons and paddlefish in China. Environmental Biology of Fishes, 48(1–4): 241−255.
    [48] Wei QW. 2019. Conservation Biology of Chinese Sturgeon (Acipenser sinensis). China: Science Press. (in Chinese)
    [49] Willi Y, Van Buskirk J, Hoffmann AA. 2006. Limits to the adaptive potential of small populations. Annual Review of Ecology, Evolution, and Systematics, 37: 433−458. doi:  10.1146/annurev.ecolsys.37.091305.110145
    [50] Xin MM. 2015. Genetic Characteristics and Parentage Identification of Chinese Sturgeon (Acipenser sinensis) Based on SSR Markers. Master thesis, Southwest University, Chongqing, China.
    [51] Yu ZT, Xu YG, Deng ZL. 1986. Reproductive ecology of Chinese sturgeon (Acipenser sinensis) in the lower reaches of Gezhouba water control project. In: Chinese Ichthyological Scoiety. Anthology of Ichthyology. China: Science Press. (in Chinese)
    [52] Zhang SM, Deng H, Wang DQ, Zhang YP, Wu QJ. 1999. Mitochondrial DNA length variation and heteroplasmy in Chinese sturgeon (Acipenser sinensis). Acta Genetica Sinica, 26(5): 489−496. (in Chinese)
    [53] Zhang SM, Wang DQ, Zhang YP. 2003. Mitochondrial DNA variation, effective female population size and population history of the endangered Chinese sturgeon, Acipenser sinensis. Conservation Genetics, 4(6): 673−683. doi:  10.1023/B:COGE.0000006107.46111.bc
    [54] Zhao N, Qiao Y, Zhu B, Liao X L, Pan L, Chang J B. 2015. Identification ability of tetraploid microsatellite loci in parentage analysis. Journal of Applied Ichthyology, 31(4): 614−619. doi:  10.1111/jai.12698
  • [1] Jing Yang, Guo-Fen Zhu, Jian Jiang, Chang-Lin Xiang, Fu-Li Gao, Wei-Dong Bao.  Non-invasive genetic analysis indicates low population connectivity in vulnerable Chinese gorals: concerns for segregated population management, Zoological Research. doi: 10.24272/j.issn.2095-8137.2019.058
    [2] Jin-Jin MIN, Rong-Hui YE, Gen-Fang ZHANG, Rong-Quan ZHENG.  Microsatellite analysis of genetic diversity and population structure of freshwater mussel (Lamprotula leai), Zoological Research. doi: 10.13918/j.issn.2095-8137.2015.1.34
    [3] Ya HE, Zheng-Huan WANG, Xiao-Ming WANG.  Genetic diversity and population structure of a Sichuan sika deer (Cervus sichuanicus) population in Tiebu Nature Reserve based on microsatellite variation, Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.6.528
    [4] Xing-Jian YUE, Shao-Ping LIU, Ming-Dian LIU, Xin-Bin DUAN, Deng-Qiang WANG, Da-Qing CHEN.  Age structure and genetic diversity of Homatula pycnolepis in the Nujiang River basin, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.4.0392
    [5] LIU Chang-Jing, ZHAO Wei, ZHOU Rong, LIU Nai-Fa.  Phylogeny and genetic diversity of Phrynocephalus przewalskii, Zoological Research. doi: 10.3724/SP.J.1141.2012.02127
    [6] Zhiying JIA, Yuyong ZHANG, Shuqiang CHEN, Lianyu SHI.  Genetic diversity and differentiation of masu salmon (Oncorhynchus masou masou) between and within cultured populations inferred from microsatellite DNA analysis, Zoological Research. doi: 10.3724/SP.J.1141.2012.E03-04E33
    [7] CHEN Shi-Yi, XU Ling, Lü Long-Bao, YAO Yong-Gang.  Genetic diversity and matrilineal structure in Chinese tree shrews inhabiting Kunming, China, Zoological Research. doi: 10.3724/SP.J.1141.2011.01017
    [8] LIN Fang-Jun, JIANG Ping-Ping, DING Ping.  Genetic analysis of microsatellite polymorphism in the Elliot’s Pheasant (Syrmaticus ellioti) in China, Zoological Research. doi: 10.3724/SP.J.1141.2010.05461
    [9] CHEN Min-Li, ZHU Liang, CAI Yue-Qin, YU Jia, XU Xiao-Ping, TU Jue, XIAO Hui, PAN.  Monitoring Inbreeding of WHBE Rabbits Using Microsatellites, Zoological Research. doi: 10.3724/SP.J.1141.2010.04401
    [10] LIU Yan-hua, ZHANG Ming-hai.  Population Genetic Diversity of Roe Deer (Capreolus pygargus) in Mountains of Heilongjiang Province, Zoological Research. doi: 10.3724/SP.J.1141.2009.02113
    [11] HUO Jin-long, HUO Hai-long, MIAO Yong-wang, LI Fu-quan, LIU Li-xian, WU Ge-min, OUYAN.  Genetic Diversity of 76 STR Loci in the Dahe Pig, Zoological Research. doi: 10.3724/SP.J.1141.2009.01105
    [12] LI Ou, ZHAO Ying-ying, GUO Na, LU Cui-yun, SUN Xiao-wen.  Effects of Sample Size and Loci Number on Genetic Diversity in Wild Population of Grass Carp Revealed by SSR, Zoological Research. doi: 10.3724/SP.J.1141.2009.02121
    [13] LIU Qing-shen, FENG Ding-yuan, ZHANG Hui-ming, LIU Shen-fu.  Genetic Diversity of Chinese Shar-pei Dog Using Microsatellite DNA Markers, Zoological Research.
    [14] YE Lang-hui HUO Jin-long MIAO Yong-wang , * ZHU Sheng-quan CHEN Tao LIU Li-xian PAN Wei-rong BI Bao-liang.  Genetic Diversity Analysis of Nixi Chicken Using Microsatellite DNA Markers, Zoological Research.
    [15] ZHANG Yan-shuai, FAN Xue-ming.  Genetic Diversity of Hydra robusta in Heilongjiang Province by RAPD Analysis, Zoological Research.
    [16] TAO Feng-yong, WANG Xiao-ming, ZHENG He-xun, FANG Sheng-guo.  Genetic Structure and Geographic Subdivision of Four Populations of the Chinese Giant Salamander (Andrias davidianus), Zoological Research.
    [17] ZHANG Tong-zuo, LIAN Xin-ming, LI Lai-xing, CUI Qing-hu, LI Guang-ying, SU Jian-ping.  A Preliminary Report on Reproductive Success of Cormorants (Phalacrocorax carbo) at Qinghai Lake, Zoological Research.
    [18] LU Cheng, ZHAO Ai-chun, XIANG Zhong-huai, WAN Chun-ling.  AFLP Analysis of Genetic Diversity of Bombyx mandarina in China, Zoological Research.
    [19] ZHANG Si-ming, DENG Huai, WEI Qi-wei, WANG Deng-qiang, WU Qing-jiang.  The Preliminary Evidence For Low Genetic Diversity in Chinese Sturgeon (Acipenser sinensis) Revealed By Protein Electrophoresis, Zoological Research.
    [20] LI Ming, WANG Xiao-ming, SHENG He-lin, H.Tamate, R.Masuda, J.Nagata et al..  Origin and Genetic Diversity of Four Subspecies of Red Deer (Cervus elaphus), Zoological Research.
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  1414
  • HTML全文浏览量:  339
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-20
  • 录用日期:  2020-05-06
  • 网络出版日期:  2020-06-02
  • 刊出日期:  2020-07-18

目录

    /

    返回文章
    返回