留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

D-dopachrome tautomerase from Japanese sea bass (Lateolabrax japonicus) is a chemokine-like cytokine and functional homolog of macrophage migration inhibitory factor

Feng Xu Ming-Yun Li Jiong Chen

Feng Xu, Ming-Yun Li, Jiong Chen. D-dopachrome tautomerase from Japanese sea bass (Lateolabrax japonicus) is a chemokine-like cytokine and functional homolog of macrophage migration inhibitory factor. Zoological Research, 2020, 41(1): 39-50. doi: 10.24272/j.issn.2095-8137.2020.003
Citation: Feng Xu, Ming-Yun Li, Jiong Chen. D-dopachrome tautomerase from Japanese sea bass (Lateolabrax japonicus) is a chemokine-like cytokine and functional homolog of macrophage migration inhibitory factor. Zoological Research, 2020, 41(1): 39-50. doi: 10.24272/j.issn.2095-8137.2020.003

花鲈(Lateolabrax japonicus)D-多巴色素互变异构酶(DDT)是一种趋化因子样细胞因子且与巨噬细胞迁移抑制因子(MIF)功能同源

doi: 10.24272/j.issn.2095-8137.2020.003

D-dopachrome tautomerase from Japanese sea bass (Lateolabrax japonicus) is a chemokine-like cytokine and functional homolog of macrophage migration inhibitory factor

Funds: This project was supported by the National Natural Science Foundation of China (31772876), Zhejiang Provincial Natural Science Foundation of China (LZ18C190001), Scientific Innovation Team Project of Ningbo (2015C110018), and K.C. Wong Magna Fund in Ningbo University
More Information
  • 摘要:

    D-多巴色素互变异构酶(DDT)是巨噬细胞迁移抑制因子(MIF)蛋白超家族的一员,它是一种具有趋化因子样特征的新型细胞因子。然而,目前关于鱼类DDT的研究鲜有报道。在本研究中,我们从花鲈(Lateolabrax japonicus)中鉴定出一个DDT同源物(LjDDT)。序列分析表明,LjDDT具有已知DDT和MIF同源物的典型特征,且与条石鲷(Oplegnathus fasciatus)DDT进化相关性最高。LjDDT基因mRNA在健康花鲈所有检测组织中均有表达,其中肝脏中的表达量最高。花鲈在感染哈维氏弧菌后,检测到肝、脾和头肾组织中的LjDDT转录水平显著下调。首先,我们制备了重组LjDDT(rLjDDT)及相应的抗体(anti-rLjDDT)。注射100 μg/g anti-rLjDDT对感染哈维氏弧菌的花鲈存活具有显著的保护作用。rLjDDT在体内外均能诱导花鲈单核/巨噬细胞(MO/MФ)和淋巴细胞迁移,但对中性粒细胞迁移无明显作用。rLjDDT对脂多糖(LPS)诱导产生的M1型MO/MФ有体外趋化作用,而对cAMP诱导产生的M2型MO/MФ无体外趋化作用。其次,我们通过RNA干扰(RNAi)分别敲低花鲈MO/MФ上的CD74(LjCD74)和CXCR4(LjCXCR4)表达,发现LjCD74敲低导致rLjDDT增强的MO/MФ的迁移作用被抑制,rLjMIF抑制的MO/MФ迁移作用被解除,但LjCXCR4敲低对两者无明显影响,揭示LjCD74可能是LjDDT和LjMIF在花鲈MO/MФ上的主要趋化受体。另外,同时加入rLjDDT和rLjMIF对MsiRNA、LjCD74si或LjCXCR4si处理后的花鲈MO/MФ迁移无明显影响,揭示rLjDDT和rLjMIF两者可能存在拮抗作用。综上所述,我们的研究首次表明,DDT可能作为一种MIF的拮抗剂,通过CD74介导MO/MФ趋化募集,在鱼类抗细菌感染的免疫应答中发挥作用。

  • Figure  1.  Multiple alignments of amino acid sequences of LjDDT with other DDT homologs (A) or LjMIF (B)

    Threshold for shading was >60%, with similar residues shaded gray and identical residues shaded black. LjDDT: Japanese sea bass DDT; LcDDT: Large yellow croaker DDT; FhDDT: Mummichog DDT; OmDDT: Rainbow smelt DDT; ElDDT: Northern pike DDT; OlDDT: Japanese ricefish DDT; SsDDT: Atlantic salmon DDT; OmyDDT: Rainbow trout DDT; TrDDT: Tiger puffer DDT; OfDDT: Rock bream DDT; BpDDT: Mudskipper DDT; OnDDT: Nile tilapia DDT; DrDDT: Zebrafish DDT; AmDDT: Mexican tetra DDT; MmDDT: Mouse DDT; LjMIF: Japanese sea bass MIF. GenBank accession Nos. of sequences used are listed in Supplementary Table S1. Active site residues Pro, Lys, and Ile are marked with“*”. “CXXC”motif is denoted with dotted box.

    Figure  2.  Phylogenetic tree of DDT nucleotide using neighbor-joining method (1 000 bootstrap replicates; maximum composite likelihood model) in MEGA v7

    Site of Japanese sea bass DDT is marked with“◆”. Values at forks indicate percentage of trees in which this grouping occurred after bootstrapping (1 000 replicates; shown only when >60%). Scale bar shows number of substitutions per base. GenBank accession Nos. of sequences used are listed in Supplementary Table S1.

    Figure  3.  mRNA expression analysis of LjDDT in tissues of healthy (A) and V. harveyi-infected Japanese sea bass (B–D)

    A: LjDDT mRNA expression level relative to that of Lj18S rRNA, calculated using 2–ΔCT method. B–D: Tissues were collected at different time points after bacterial infection. LjDDT mRNA expression levels relative to that of Lj18S rRNA were calculated using 2-ΔΔCT method. Data are expressed as mean±SEM of results from four fish. Values denoted by different letters are significantly different when compared by ANOVA (P<0.05).

    Figure  4.  Prokaryotic expression and Western blot analysis of LjDDT

    A: 12% SDS-PAGE analysis of bacterial lysates and purified rLjDDT. Lane M: protein marker; Lane 1: pET-28a-LjDDT/BL21 before IPTG induction; Lane 2: pET-28a-LjDDT/BL21 after IPTG induction; Lane 3: Purified rLjDDT. B: Western blot analysis of rLjDDT and native LjDDT in liver of Japanese sea bass. Lane 4: pET28a-LjDDT/BL21 before IPTG induction, negative control; Lane 5: Purified rLjDDT; Lane 6: Japanese sea bass serum; Lane 7: Japanese sea bass liver lysates.

    Figure  5.  Effect of LjDDT on survival rate of V. harveyi-infected Japanese sea bass

    Fish were ip-injected with equal volumes of rLjDDT, IsoIgG, or anti-rLjDDT, respectively, 30 min after V. harveyi infection (1×104 CFU/fish) or 1 h before V. harveyi infection (1×104 CFU/fish). Control group received an equal volume of PBS. Fish mortality was monitored daily for 9 d. n=30.

    Figure  6.  In vitro effect of rLjDDT and rLjMIF on migration of MO/MФ (A), lymphocytes (B), and neutrophils (C) at different concentrations (0, 1.0, and 10.0 μg/mL, respectively)

    Cells were counted under a light microscope at 400× magnification. Data are expressed as mean±SEM. n=4. Values denoted by different letters are significantly different when compared by ANOVA (P< 0.05).

    Figure  7.  In vivo effect of rLjDDT and rLjMIF administration on MO/MФ (A), lymphocyte (B), and neutrophil (C) numbers in abdominal cavity of Japanese sea bass at different concentrations (0, 1.0, and 10.0 μg/g respectively)

    Cells were counted under a light microscope at 400× magnification 24 h after administration of rLjDDT and rLjMIF. Data are expressed as mean± SEM. n=4. Values denoted by different letters are significantly different when compared by ANOVA (P<0.05).

    Figure  8.  Effect of rLjDDT on migration of polarized Japanese sea bass MO/MΦ

    LPS and cAMP were used to induce M1 and M2 polarization of MO/MΦ, respectively. Activities of iNOS (A) and arginase (B) were determined. After incubation with rLjDDT for 4 h, migration percentage of LPS- (C) or cAMP- (D) stimulated MO/MΦ was determined. Non-stimulated resting MO/MΦ were used as negative control (NC). Data are expressed as mean±SEM. n=4; Values denoted by different letters are significantly different when compared by ANOVA (P<0.05).

    Figure  9.  Effect of LjCD74 and LjCXCR4 knockdown on rLjDDT and rLjMIF-induced migration of MO/MΦ, respectively

    Histogram displays effect of LjCD74 (A) and LjCXCR4 (B) siRNA transfection on knockdown of MO/MΦ LjCD74 and LjCXCR4 mRNA expression by RT-qPCR analysis. C: Migration percentage of Japanese sea bass MO/MФ was examined in a Transwell chamber in presence or absence of 10.0 μg/mL rLjDDT, rLjMIF, or rLjDDT+rLjMIF combined. Each bar represents mean±SEM, n=4. Values denoted by different letters are significantly different when compared by ANOVA (P<0.05).

  • [1] Abe R, Peng T, Sailors J, Bucala R, Metz CN. 2001. Regulation of the CTL response by macrophage migration inhibitory factor. The Journal of Immunology, 166(2): 747−753. doi:  10.4049/jimmunol.166.2.747
    [2] Benedek G, Meza-Romero R, Jordan K, Zhang Y, Nguyen H, Kent G, Li J, Siu E, Frazer J, Piecychna M, Du X, Sreih A, Leng L, Wiedrick J, Caillier SJ, Offner H, Oksenberg JR, Yadav V, Bourdette D, Bucala R, Vandenbark AA. 2017. MIF and D-DT are potential disease severity modifiers in male MS subjects. Proceedings of the National Academy of Sciences of the United States of America, 114(40): E8421−E8429. doi:  10.1073/pnas.1712288114
    [3] Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, Dewor M, Georgiev I, Schober A, Leng L, Kooistra T, Fingerle-Rowson G, Ghezzi P, Kleemann R, McColl SR, Bucala R, Hickey MJ, Weber C. 2007. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nature Medicine, 13(5): 587−596. doi:  10.1038/nm1567
    [4] Bloom BR, Bennett B. 1966. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science, 153(3731): 80−82. doi:  10.1126/science.153.3731.80
    [5] Chen F, Lu XJ, Nie L, Ning YJ, Chen J. 2018. Molecular characterization of a CC motif chemokine 19-like gene in ayu (Plecoglossus altivelis) and its role in leukocyte trafficking. Fish and Shellfish Immunology, 72: 301−308. doi:  10.1016/j.fsi.2017.11.012
    [6] Chen J, Chen Q, Lu XJ, Li CH. 2014. LECT2 improves the outcomes in ayu with Vibrio anguillarum infection via monocytes/macrophages. Fish and Shellfish Immunology, 41(2): 586−592. doi:  10.1016/j.fsi.2014.10.012
    [7] Chen K, Shi YH, Chen J, Li MY. 2019. A soluble FcγR homolog inhibits IgM antibody production in ayu spleen cells. Zoological Research, 2019, 40(5): 404−415.
    [8] Coleman AM, Rendon BE, Zhao M, Qian MW, Bucala R, Xin D, Mitchell RA. 2008. Cooperative regulation of non-small cell lung carcinoma angiogenic potential by macrophage migration inhibitory factor and its homolog, D-dopachrome tautomerase. The Journal of Immunology, 181(4): 2330−2337. doi:  10.4049/jimmunol.181.4.2330
    [9] David JR. 1966. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proceedings of the National Academy of Sciences of the United States of America, 56(1): 72−77. doi:  10.1073/pnas.56.1.72
    [10] Esumi N, Budarf M, Ciccarelli L, Sellinger B, Kozak CA, Wistow G. 1998. Conserved gene structure and genomic linkage for D-dopachrome tautomerase (DDT) and MIF. Mammalian Genome, 9(9): 753−757. doi:  10.1007/s003359900858
    [11] Fagone P, Mazzon E, Cavalli E, Bramanti A, Petralia MC, Mangano K, Al-Abed Y, Bramati P, Nicoletti F. 2018. Contribution of the macrophage migration inhibitory factor superfamily of cytokines in the pathogenesis of preclinical and human multiple sclerosis: in silico and in vivo evidences. Journal of Neuroimmunology, 322: 46−56. doi:  10.1016/j.jneuroim.2018.06.009
    [12] Fernández J, Acevedo J, Wiest R, Gustot T, Amoros A, Deulofeu C, Reverter E, Martínez J, Saliba F, Jalan R, Welzel T, Pavesi M, Hernández-Tejero M, Ginès P, Arroyo V. 2018. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut, 67(10): 1870−1880. doi:  10.1136/gutjnl-2017-314240
    [13] Furukawa R, Tamaki K, Kaneko H. 2016. Two macrophage migration inhibitory factors regulate starfish larval immune cell chemotaxis. Immunology and Cell Biology, 94(4): 315−321. doi:  10.1038/icb.2016.6
    [14] Günther S, Fagone P, Jalce G, Atanasov AG, Guignabert C, Nicoletti F. 2019. Role of MIF and D-DT in immune-inflammatory, autoimmune, and chronic respiratory diseases: from pathogenic factors to therapeutic targets. Drug Discovery Today, 24(2): 428−439. doi:  10.1016/j.drudis.2018.11.003
    [15] Guo D, Guo J, Yao J, Jiang K, Hu J, Wang B, Liu H, Sun W, Jiang X. 2016. D-dopachrome tautomerase is over-expressed in pancreatic ductal adenocarcinoma and acts cooperatively with macrophage migration inhibitory factor to promote cancer growth. International Journal of Cancer, 139(9): 2056−2067. doi:  10.1002/ijc.30278
    [16] Jankauskas SS, Wong DWL, Bucala R, Djudjaj S, Boor P. 2019. Evolving complexity of MIF signaling. Cellular Signalling, 57: 76−88. doi:  10.1016/j.cellsig.2019.01.006
    [17] Jin HJ, Xiang LX, Shao JZ. 2007. Molecular cloning and identification of macrophage migration inhibitory factor (MIF) in teleost fish. Developmental and Comparative Immunology, 31(11): 1131−1144. doi:  10.1016/j.dci.2007.02.004
    [18] Joerink M, Ribeiro CMS, Stet RJM, Hermsen T, Savelkoul HFJ, Wiegertjes GF. 2006. Head kidney-derived macrophages of common carp (Cyprinus carpio L. ) show plasticity and functional polarization upon differential stimulation. The Journal of Immunology, 177(1): 61−69.
    [19] Kim BS, Stoppe C, Grieb G, Leng L, Sauler M, Assis D, Simons D, Boecker AH, Schulte W, Piecychna M, Hager S, Bernhagen J, Pallua N, Bucala R. 2016. The clinical significance of the MIF homolog d-dopachrome tautomerase (MIF-2) and its circulating receptor (sCD74) in burn. Burns, 42(6): 1265−1276. doi:  10.1016/j.burns.2016.02.005
    [20] Kim BS, Tilstam PV, Hwang SS, Simons D, Schulte W, Leng L, Sauler M, Ganse B, Averdunk L, Kopp R, Stoppe C, Bernhagen J, Pallua N, Bucala R. 2017. D-dopachrome tautomerase in adipose tissue inflammation and wound repair. Journal of Cellular and Molecular Medicine, 21(1): 35−45. doi:  10.1111/jcmm.12936
    [21] Klasen C, Ohl K, Sternkopf M, Shachar I, Schmitz C, Heussen N, Hobeika E, Levit-Zerdoun E, Tenbrock K, Reth M, Bernhagen J, El Bounkari O. 2014. MIF promotes B cell chemotaxis through the receptors CXCR4 and CD74 and ZAP-70 signaling. The Journal of Immunology, 192(11): 5273−5284. doi:  10.4049/jimmunol.1302209
    [22] Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870−1874. doi:  10.1093/molbev/msw054
    [23] Leng L, Bucala R. 2006. Insight into the biology of macrophage migration inhibitory factor (MIF) revealed by the cloning of its cell surface receptor. Cell Research, 16(2): 162−168. doi:  10.1038/sj.cr.7310022
    [24] Liu H, Lu XJ, Chen J. 2018. Full-length and a smaller globular fragment of adiponectin have opposite roles in regulating monocyte/macrophage functions in ayu, Plecoglossus altivelis. Fish and Shellfish Immunology, 82: 319−329. doi:  10.1016/j.fsi.2018.08.041
    [25] Lu XJ, Chen J. 2019. Specific function and modulation of teleost monocytes/ macrophages: polarization and phagocytosis. Zoological Research, 40(3): 146−150. doi:  10.24272/j.issn.2095-8137.2019.035
    [26] Luster AD, Alon R, von Andrian UH. 2005. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunology, 6(12): 1182−1190. doi:  10.1038/ni1275
    [27] Ma Y, Su KN, Pfau D, Rao VS, Wu X, Hu X, Leng L, Du X, Piecychna M, Bedi K, Campbell SG, Eichmann A, Testani JM, Margulies KB, Bucala R, Young LH. 2019. Cardiomyocyte d-dopachrome tautomerase protects against heart failure. The Journal of Clinical Investigation Insight, 4(17): 128900.
    [28] Merk M, Baugh J, Zierow S, Leng L, Pal U, Lee SJ, Ebert AD, Mizue Y, Trent JO, Mitchell R, Nickel W, Kavathas PB, Bernhagen J, Bucala R. 2009. The golgi-associated protein p115 mediates the secretion of macrophage migration inhibitory factor. The Journal of Immunology, 182(11): 6896−6906. doi:  10.4049/jimmunol.0803710
    [29] Merk M, Mitchell RA, Endres S, Bucala R. 2012. D-dopachrome tautomerase (D-DT or MIF-2): doubling the MIF cytokine family. Cytokine, 59(1): 10−17. doi:  10.1016/j.cyto.2012.03.014
    [30] Merk M, Zierow S, Leng L, Das R, Du X, Schulte W, Fan J, Lue H, Chen Y, Xiong H, Chagnon F, Bernhagen J, Lolis E, Mor G, Lesur O, Bucala R. 2011. The D-dopachrome tautomerase (DDT) gene product is a cytokine and functional homolog of macrophage migration inhibitory factor (MIF). Proceedings of the National Academy of Sciences of the United States of America, 108(34): E577−E585. doi:  10.1073/pnas.1102941108
    [31] Nishihira J, Fujinaga M, Kuriyama T, Suzuki M, Sugimoto H, Nakagawa A, Tanaka I, Sakai M. 1998. Molecular cloning of human D-dopachrome tautomerase cDNA: N-terminal proline is essential for enzyme activation. Biochemical and Biophysical Research Communications, 243(2): 538−544. doi:  10.1006/bbrc.1998.8123
    [32] Odh G, Hindemith A, Rosengren AM, Rosengren E, Rorsman H. 1993. Isolation of a new tautomerase monitored by the conversion of D-dopachrome to 5,6-dihydroxyindole. Biochemical and Biophysical Research Communications, 197(2): 619−624. doi:  10.1006/bbrc.1993.2524
    [33] Oh M, Kasthuri SR, Wan Q, Bathige SDNK, Whang I, Lim BS, Jung HB, Oh MJ, Jung SJ, Kim SY, Lee J. 2013. Characterization of MIF family proteins: MIF and DDT from rock bream, Oplegnathus fasciatus. Fish and Shellfish Immunology, 35(2): 458−468. doi:  10.1016/j.fsi.2013.05.003
    [34] Pasupuleti V, Du W, Gupta Y, Yeh IJ, Montano M, Magi-Galuzzi C, Welford SM. 2014. Dysregulated D-dopachrome tautomerase, a hypoxia-inducible factor-dependent gene, cooperates with macrophage migration inhibitory factor in renal tumorigenesis. Journal of Biological Chemistry, 289(6): 3713−3723. doi:  10.1074/jbc.M113.500694
    [35] Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. 2015. Diversity and inter-connections in the CXCR4 chemokine receptor/ligand family: molecular perspectives. Frontiers in Immunology, 6: 429.
    [36] Pohl J, Hendgen-Cotta UB, Stock P, Luedike P, Rassaf T. 2017. Elevated MIF-2 levels predict mortality in critically ill patients. Journal of Critical Care, 40: 52−57. doi:  10.1016/j.jcrc.2017.03.012
    [37] Presti M, Mazzon E, Basile MS, Petralia MC, Bramanti A, Colletti G, Bramanti P, Nicoletti F, Fagone P. 2018. Overexpression of macrophage migration inhibitory factor and functionally-related genes, D-DT, CD74, CD44, CXCR2 and CXCR4, in glioblastoma. Oncology Letters, 16(3): 2881−2886.
    [38] Rajasekaran D, Gröning S, Schmitz C, Zierow S, Drucker N, Bakou M, Kohl K, Mertens A, Lue H, Weber C, Xiao A, Luker G, Kapurniotu A, Lolis E, Bernhagen J. 2016. Macrophage migration inhibitory factor-CXCR4 receptor interactions: evidence for partial allosteric agonism in comparison with CXCL12 chemokine. Journal of Biological Chemistry, 291(30): 15881−15895. doi:  10.1074/jbc.M116.717751
    [39] Ren Y, Liu SF, Nie L, Cai SY, Chen J. 2019. Involvement of ayu NOD2 in NF-κB and MAPK signaling pathways: insights into functional conservation of NOD2 in antibacterial innate immunity. Zoological Research, 40(2): 77−88. doi:  10.24272/j.issn.2095-8137.2018.066
    [40] Rijvers L, Melief MJ, van der Vuurst de Vries RM, Stéphant M, van Langelaar J, Wierenga-Wolf AF, Hogervorst JM, Geurts-Moespot AJ, Sweep FCGJ, Hintzen RQ, van Luijn MM. 2018. The macrophage migration inhibitory factor pathway in human B cells is tightly controlled and dysregulated in multiple sclerosis. European Journal of Immunology, 48(11): 1861−1871. doi:  10.1002/eji.201847623
    [41] Schober A, Bernhagen J, Weber C. 2008. Chemokine-like functions of MIF in atherosclerosis. Journal of Molecular Medicine, 86(7): 761−770. doi:  10.1007/s00109-008-0334-2
    [42] Schwartz V, Lue H, Kraemer S, Korbiel J, Krohn R, Ohl K, Bucala R, Weber C, Bernhagen J. 2009. A functional heteromeric MIF receptor formed by CD74 and CXCR4. FEBS Letters, 583(17): 2749−2757. doi:  10.1016/j.febslet.2009.07.058
    [43] Shen YC, Thompson DL, Kuah MK, Wong KL, Wu KL, Linn SA, Jewett EM, Shu-Chien AC, Barald KF. 2012. The cytokine macrophage migration inhibitory factor (MIF) acts as a neurotrophin in the developing inner ear of the zebrafish, Danio rerio. Developmental Biology, 363(1): 84−94. doi:  10.1016/j.ydbio.2011.12.023
    [44] Sinitski D, Kontos C, Krammer C, Asare Y, Kapurniotu A, Bernhagen J. 2019. Macrophage migration inhibitory factor (MIF)-based therapeutic concepts in atherosclerosis and inflammation. Journal of Thrombosis and Haemostasis, 119(4): 553−566. doi:  10.1055/s-0039-1677803
    [45] Soppert J, Kraemer S, Beckers C, Averdunk L, Möllmann J, Denecke B, Goetzenich A, Marx G, Bernhagen J, Stoppe C. 2018. Soluble CD74 reroutes MIF/CXCR4/AKT-mediated survival of cardiac myofibroblasts to necroptosis. Journal of the American Heart Association, 7(17): e009384.
    [46] Sugimoto H, Taniguchi M, Nakagawa A, Tanaka I, Suzuki M, Nishihira J. 1999. Crystal structure of human D-dopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at1.54 Å resolution. Biochemistry, 38(11): 3268−3279. doi:  10.1021/bi982184o
    [47] Tilstam PV, Qi D, Leng L, Young L, Bucala R. 2017. MIF family cytokines in cardiovascular diseases and prospects for precision-based therapeutics. Expert Opinion on Therapeutic Targets, 21(7): 671−683. doi:  10.1080/14728222.2017.1336227
    [48] Valiño-Rivas L, Cuarental L, Grana O, Bucala R, Leng L, Sanz A, Gomez G, Ortiz A, Sanchez-Niño MD. 2018. TWEAK increases CD74 expression and sensitizes to DDT proinflammatory actions in tubular cells. PLoS One, 13(6): e0199391. doi:  10.1371/journal.pone.0199391
    [49] Vincent FB, Lin E, Sahhar J, Ngian GS, Kandane-Rathnayake R, Mende R, Hoi AY, Morand EF, Lang T, Harris J. 2018. Analysis of serum macrophage migration inhibitory factor and D-dopachrome tautomerase in systemic sclerosis. Clinical & Translational Immunology, 7(12): e1042.
    [50] Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. 2019. M2b macrophage polarization and its roles in diseases. Journal of Leukocyte Biology, 106(2): 345−358. doi:  10.1002/JLB.3RU1018-378RR
    [51] Wang Q, Wei Y, Zhang J. 2017. Combined knockdown of D-dopachrome tautomerase and migration inhibitory factor inhibits the proliferation, migration, and invasion in human cervical cancer. International Journal of Gynecological Cancer, 27(4): 634−642. doi:  10.1097/IGC.0000000000000951
    [52] Weber C, Kraemer S, Drechsler M, Lue H, Koenen RR, Kapurniotu A, Zernecke A, Bernhagen J. 2008. Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment. Proceedings of the National Academy of Sciences of the United States of America, 105(42): 16278−16283. doi:  10.1073/pnas.0804017105
    [53] Xu F, Shi YH, Chen J. 2019. Characterization and immunologic functions of the macrophage migration inhibitory factor from Japanese sea bass, Lateolabrax japonicus. Fish and Shellfish Immunology, 86: 947−955. doi:  10.1016/j.fsi.2018.12.042
    [54] Yu L, Li CH, Chen J. 2019. A novel CC chemokine ligand 2 like gene from ayu Plecoglossus altivelis is involved in the innate immune response against to Vibrio anguillarum. Fish and Shellfish Immunology, 87: 886−896. doi:  10.1016/j.fsi.2019.02.019
    [55] Zhang M, Åman P, Grubb A, Panagopoulos I, Hindemith A, Rosengren E, Rorsman H. 1995. Cloning and sequencing of a cDNA encoding rat D-dopachrome tautomerase. FEBS Letters, 373(3): 203−206. doi:  10.1016/0014-5793(95)01041-C
    [56] Zhou QJ, Wang L, Chen J, Wang RN, Shi YH, Li CH, Zhang DM, Yan XJ, Zhang YJ. 2014. Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals. Journal of Microbiological Methods, 104: 26−35. doi:  10.1016/j.mimet.2014.06.008
  • [1] Chang-Hong Li, Jie Chen, Li Nie, Jiong Chen.  MOSPD2 is a receptor mediating the LEAP-2 effect on monocytes/macrophages in a teleost, Boleophthalmus pectinirostris, Zoological Research. doi: 10.24272/j.issn.2095-8137.2020.211
    [2] Jun-Zhen LI, Lin WANG, Rui-Chun TIAN, Shi-Yang LI.  Number, migration, breeding and conservation management of Black-necked Cranes (Grus nigricollis) at Gahai, Gansu, China, Zoological Research. doi: 10.11813/j.issn.2095-8137.2014.s1.0211
    [3] De-Jun KONG, Xing-Yao ZHONG, Jun-Xing YANG, Xiao-Jun YANG.  Seasonal and daily migration behavior of Black-necked Cranes (Grus nigricollis) in Yunnan, China: timing and volume, Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.s1.0181
    [4] De-Jun KONG, Feng-Shan LI, Xiao-Jun YANG.  Using bird banding and recovery to study the migration of Black-necked Cranes (Grus nigricollis) in China, Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.s1.0020
    [5] Wei-Yao KONG, Zhen-He ZHENG, Jin-Cai WU, Yu NING, Yong WANG, Xiao-Dong HAN.  Foraging habitat selection of Siberian Crane (Grus leucogeranus) during autumn migration period in the Momoge Nature Reserve, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.3.0166
    [6] SHI Yu-Hong, CHEN Jiong, GAO Shan-Shan, SHEN Guang-Qiang, LU Xin-Jiang, LI Ming-Yun.  Cloning, physical and chemical property analysis of the Japanese sea bass Wap65-2 gene and its expression following Vibrio harveyi infection, Zoological Research. doi: 10.3724/SP.J.1141.2012.05481
    [7] ZHUANG Yong-Hui, LI Si-Man, YU Guo-Yu, ZHANG Yong, XIANG Yang, ZOU Hao, LEE Wen-Hui.  Bacterial expression and purification of biologically active human TFF2, Zoological Research. doi: 10.3724/SP.J.1141.2012.02144
    [8] GUO Hong-Yi, ZHENG Yi, TANG Wen-Qiao, SHEN Hao, WEI Kai, XIE Zheng-Li, Katsumi Ts.  Behavioral migration diversity of the Yangtze River Japanese Eel, Anguilla japonica, based on otolith Sr/Ca ratios, Zoological Research. doi: 10.3724/SP.J.1141.2011.04442
    [9] yu guo-Yu, XIANG Yang, ZHANG Hong-Yun, JIANG Ping, Lee Wen-Hui, ZHANG Yun, ZHANG.  Expression of Bm-TFF2 mutants in Escherichia coli andtheir cell migration-promoting activity, Zoological Research. doi: 10.3724/SP.J.1141.2011.04379
    [10] SHI Yu, ZHAO Shu-hua, MAO Bing-yu.  Physical Blocking Neural Tube Closure Affects Radial Intercalation and Neural Crest Midline-directed Migration in Xenopus Dorsal Explants, Zoological Research. doi: 10.3724/SP.J.1141.2009.06639
    [11] HAN Lian-xian, *, HUANG Shi-lin, YUAN Yu-chuan, QIU Yun-long.  Fall Migration Dynamics of Birds on Fenghuang Mountain, Yunnan Province, China, Zoological Research.
    [12] YANG Jun-xing *, CHEN Xiao-yong, CHEN Ying-rui.  On the Population Status and Migration of Pangasiid Catfishes in Lancangjiang River Basin, China, Zoological Research.
    [13] ZHENG De-shu.  Apoptosis and Programmed Cell Death, Zoological Research.
    [14] LI Fang-man.  Ecological Study on The Sibrian Cranes Spring Migration in Lindian Stopover, Zoological Research.
    [15] LU Yu-yan, LI Pi-peng.  Morphological Studies of Thymic Macrophage in Snake, Zoological Research.
    [16] ZHONG Ming-chao, HUANG Zhe.  Induced Development of Pigment Macrophage Aggregate (Pma) in Adult and Juvenile of the Freshwater Catfish Silurus asotus L., Zoological Research.
    [17] WANG Gui-ying, HU Jie-yu, YAN Yu-juan.  Action of Cytochalasin D on Cells of Mouse Mammary Adenocarcinoma Cell Line (MA782/5S-8102), Zoological Research.
    [18] LI Gui-yuan.  The Spring Migration of the Black-Naped Oriole Over China, Zoological Research.
    [19] LI Ling-yan.  Cell Theory, Zoological Research.
    [20] KE Shi-fang, WU De-lian, SHOU Gan-cheng et al..  Studies on the Migration and Development of Necator americanus in Golden Hamsters (Mesocricetus auratus), Zoological Research.
  • ZoolRes-41-1-39-Supplementary Tables and Figures.pdf
  • 加载中
图(9)
计量
  • 文章访问数:  951
  • HTML全文浏览量:  159
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-11
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回