留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Genomic organization and evolution of ruminant lysozyme c genes

David M. IRWIN

David M. IRWIN. Genomic organization and evolution of ruminant lysozyme c genes. Zoological Research, 2015, 36(1): 1-17. doi: 10.13918/j.issn.2095-8137.2015.1.1
Citation: David M. IRWIN. Genomic organization and evolution of ruminant lysozyme c genes. Zoological Research, 2015, 36(1): 1-17. doi: 10.13918/j.issn.2095-8137.2015.1.1

Genomic organization and evolution of ruminant lysozyme c genes

doi: 10.13918/j.issn.2095-8137.2015.1.1
基金项目: This study was supported by grants from the Natural Sciences and Engineering Research Council (RGPIN 183701)
Supplemental Figure 1. Predicted lysozyme c cDNA sequences in fasta format
 
详细信息
    通讯作者:

    David M. IRWIN

Genomic organization and evolution of ruminant lysozyme c genes

Funds: This study was supported by grants from the Natural Sciences and Engineering Research Council (RGPIN 183701)
Supplemental Figure 1. Predicted lysozyme c cDNA sequences in fasta format
 
More Information
    Corresponding author: David M. IRWIN
  • 摘要: Ruminant stomach lysozyme is a long established model of adaptive gene evolution. Evolution of stomach lysozyme function required changes in the site of expression of the lysozyme c gene and changes in the enzymatic properties of the enzyme. In ruminant mammals, these changes were associated with a change in the size of the lysozyme c gene family. The recent release of near complete genome sequences from several ruminant species allows a more complete examination of the evolution and diversification of the lysozyme c gene family. Here we characterize the size of the lysozyme c gene family in extant ruminants and demonstrate that their pecoran ruminant ancestor had a family of at least 10 lysozyme c genes, which included at least two pseudogenes. Evolutionary analysis of the ruminant lysozyme c gene sequences demonstrate that each of the four exons of the lysozyme c gene has a unique evolutionary history, indicating that they participated independently in concerted evolution. These analyses also show that episodic changes in the evolutionary constraints on the protein sequences occurred, with lysozyme c genes expressed in the abomasum of the stomach of extant ruminant species showing the greatest levels of selective constraints.
  • [1] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215(3): 403-410.
    [2] Callewaert L, Michiels CW. 2010. Lysozymes in the animal kingdom. Journal of Biosciences, 35(1): 127-160.
    [3] Canavez FC, Luche DD, Stothard P, Leite KR, Sousa-Canavez JM, Plastow G, Meidanis J, Souza MA, Feijao P, Moore SS, Camara-Lopes LH. 2012. Genome sequence and assembly of Bos indicus. Journal of Heredity, 103(3): 342-348.
    [4] Clauss M, Hume ID, Hummel J. 2010. Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal, 4(7): 979-992.
    [5] Dobson DE, Prager EM, Wilson AC. 1984. Stomach lysozymes of ruminants. I. Distribution and catalytic properties. Journal of Biological Chemistry, 259(18): 11607-11616.
    [6] Dong Y, Xie M, Jiang Y, Xiao NQ, Du XY, Zhang WG, Tosser-Klopp G, Wang JH, Yang S, Liang J, Chen WB, Chen J, Zeng P, Hou Y, Bian C, Pan SK, Li YX, Liu X, Wang WL, Servin B, Sayre B, Zhu B, Sweeney D, Moore R, Nie W, Shen Y, Zhao R, Zhang G, Li J, Faraut T, Womack J, Zhang Y, Kijas J, Cockett N, Xu X, Zhao S, Wang J, Wang W. 2013. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nature Biotechnology, 31(2): 135-141.
    [7] Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5): 1792-1797.
    [8] Gallagher DS Jr, Threadgill DW, Ryan AM, Womack JE, Irwin DM. 1993. Physical mapping of the lysozyme gene family in cattle. Mammalian Genome, 4(7): 368-373.
    [9] Ge RL, Cai Q, Shen YY, San A, Ma L, Zhang Y, Yi X, Chen Y, Yang L, Huang Y, He R, Hui Y, Hao M, Li Y, Wang B, Ou X, Xu J, Zhang Y, Wu K, Geng C, Zhou W, Zhou T, Irwin DM, Yang Y, Ying L, Bao H, Kim J, Larkin DM, Ma J, Lewin HA, Xing J, Platt RN 2nd, Ray DA, Auvil L, Capitanu B, Zhang X, Zhang G, Murphy RW, Wang J, Zhang YP, Wang J. 2013. Draft genome sequence of the Tibetan antelope. Nature Communications, 4: 1858.
    [10] Irwin DM. 1995. Evolution of the bovine lysozyme gene family: changes in gene expression and reversion of function. Journal of Molecular Evolution, 41(3): 299-312.
    [11] Irwin DM. 1996. Molecular evolution of ruminant lysozymes. In: Jollès P. Lysozymes: Model Enzymes in Biochemistry and Molecular Biology. Basel: Birkhäuser Verlag, 347-361.
    [12] Irwin DM. 2004. Evolution of cow nonstomach lysozyme genes. Genome, 47(6): 1082-1090.
    [13] Irwin DM, Wilson AC. 1989. Multiple cDNA sequences and the evolution of bovine stomach lysozyme. Journal of Biological Chemistry, 264(19): 11387-11393.
    [14] Irwin DM, Wilson AC. 1990. Concerted evolution of ruminant stomach lysozymes. Characterization of lysozyme cDNA clones from sheep and deer. Journal of Biological Chemistry, 265(9): 4944-4952.
    [15] Irwin DM, Sidow A, White RT, Wilson AC. 1989. Multiple genes for ruminant lysozymes. In: Smith-Gill SJ, Sercarz EE. The Immune Response to Structurally Defined Proteins. NY: Adenine Press, 73-85.
    [16] Irwin DM, Prager EM, Wilson AC. 1992. Evolutionary genetics of ruminant lysozymes. Animal Genetics, 23(3): 193-202.
    [17] Irwin DM, White RT, Wilson AC. 1993. Characterization of the cow stomach lysozyme genes: repetitive DNA and concerted evolution. Journal of Molecular Evolution, 37(4): 355-366.
    [18] Irwin DM, Yu M, Wen Y. 1996. Isolation and characterization of vertebrate lysozyme genes. In: Jollès P. Lysozymes: Model Enzymes in Biochemistry and Molecular Biology. Basel: Birkhäuser Verlag, 225-241.
    [19] Irwin DM, Biegel JM, Stewart CB. 2011. Evolution of the mammalian lysozyme gene family. BMC Evolutionary Biology, 11: 166.
    [20] Janis C. 1976. The evolutionary strategy of Equidae and the origins of rumen and cecal digestion. Evolution, 30(4): 757-774.
    [21] Jiang Y, Xie M, Chen W, Talbot R, Maddox JF, Faraut T, Wu C, Muzny DM, Li Y, Zhang W, Stanton JA, Brauning R, Barris WC, Hourlier T, Aken BL, Searle SM, Adelson DL, Bian C, Cam GR, Chen Y, Cheng S, DeSilva U, Dixen K, Dong Y, Fan G, Franklin IR, Fu S, Fuentes-Utrilla P, Guan R, Highland MA, Holder ME, Huang G, Ingham AB, Jhangiani SN, Kalra D, Kovar CL, Lee SL, Liu W, Liu X, Lu C, Lü T, Mathew T, McWilliam S, Menzies M, Pan S, Robelin D, Servin B, Townley D, Wang W, Wei B, White SN, Yang X, Ye C, Yue Y, Zeng P, Zhou Q, Hansen JB, Kristiansen K, Gibbs RA, Flicek P, Warkup CC, Jones HE, Oddy VH, Nicholas FW, McEwan JC, Kijas JW, Wang J, Worley KC, Archibald AL, Cockett N, Xu X, Wang W, Dalrymple BP. 2014. The sheep genome illuminates biology of the rumen and lipid metabolism. Science, 344(6188): 1168-1173.
    [22] Jollès J, Jollès P, Bowman BH, Prager EM, Stewart CB, Wilson AC. 1989. Episodic evolution in the stomach lysozymes of ruminants. Journal of Molecular Evolution, 28(6): 528-535.
    [23] Kornegay JR, Schilling JW, Wilson AC. 1994. Molecular adaptation of a leaf-eating bird: stomach lysozyme of the hoatzin. Molecular Biology and Evolution, 11(6): 921-928.
    [24] Kornegay JR. 1996. Molecular genetics and evolution of stomach and nonstomach lysozymes in the hoatzin. Journal of Molecular Evolution, 42(6): 676-684.
    [25] Liu GE, Ventura M, Cellamare A, Chen L, Cheng Z, Zhu B, Li C, Song J, Eichler EE. 2009. Analysis of recent segmental duplications in the bovine genome. BMC Genomics, 10: 571.
    [26] Mackie RI. 2002. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integrative and Comparative Biology, 42(2): 319-326.
    [27] Morgan CC, Foster PG, Webb AE, Pisani D, McInerney JO, O'Connell MJ. 2013. Heterogeneous models place the root of the placental mammal phylogeny. Molecular Biology and Evolution, 30(9): 2145-2156.
    [28] Néron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, Carrere S, Tuffery P, Letondal C. 2009. Mobyle: a new full web bioinformatics framework. Bioinformatics, 25(22): 3005-3011.
    [29] Prager EM. 1996. Adaptive evolution of lysozyme: changes in amino acid sequence, regulation of expression and gene number. In: Jollès P. Lysozymes: Model Enzymes in Biochemistry and Molecular Biology. Basel: Birkhäuser Verlag, 323-345.
    [30] Prager EM, Jollès P. 1996. Animal lysozymes c and g: an overview. In: Jollès P. Lysozymes: Model Enzymes in Biochemistry and Molecular Biology. Basel: Birkhäuser Verlag, 9-31.
    [31] Qiu Q, Zhang GJ, Ma T, Qian WB, Wang JY, Ye ZQ, Cao CC, Hu QJ, Kim J, Larkin DM, Auvil L, Capitanu B, Ma J, Lewin HA, Qian XJ, Lang YS, Zhou R, Wang LZ, Wang K, Xia JQ, Liao SG, Pan SK, Lu X, Hou HL, Wang Y, Zang XT, Yin Y, Ma H, Zhang J, Wang ZF, Zhang YM, Zhang DW, Yonezawa T, Hasegawa M, Zhong Y, Liu WB, Zhang Y, Huang ZY, Zhang SX, Long RJ, Yang HM, Wang J, Lenstra JA, Cooper DN, Wu Y, Wang J, Shi P, Wang J, Liu JQ. 2012. The yak genome and adaptation to life at high altitude. Nature Genetics, 44(8): 946-949.
    [32] Romiguier J, Ranwez V, Delsuc F, Galtier N, Douzery EJ. 2013. Less is more in mammalian phylogenomics: AT-rich genes minimize tree conflicts and unravel the root of placental mammals. Molecular Biology and Evolution, 30(9): 2134-2144.
    [33] Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J, Gibbs R, Hardison R, Miller W. 2000. PipMaker--a web server for aligning two genomic DNA sequences. Genome Research, 10(4): 577-586.
    [34] Schwartz S, Elnitski L, Li M, Weirauch M, Riemer C, Smit A; NISC Comparative Sequencing Program, Green ED, Hardison RC, Miller W. 2003. MultiPipMaker and supporting tools: Alignments and analysis of multiple genomic DNA sequences. Nucleic Acids Research, 31(13): 3518-3524.
    [35] Seo S, Larkin DM, Loor JJ. 2013. Cattle genomics and its implications for future nutritional strategies for dairy cattle. Animal, 7(S1): 172-183.
    [36] Short ML, Nickel J, Schmitz A, Renkawitz R. 1996. Lysozyme gene expression and regulation. In: Jollès P. Lysozymes: Model Enzymes in Biochemistry and Molecular Biology. Basel: Birkhäuser Verlag, 243-257.
    [37] Stevens CE, Hume ID. 1998. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiological Reviews, 78(2): 393-427.
    [38] Stewart CB, Wilson AC. 1987. Sequence convergence and functional adaptation of stomach lysozymes from foregut fermenters. Cold Spring Harbor Symposium on Quantitative Biology, 52: 891-899.
    [39] Stewart CB, Schilling JW, Wilson AC. 1987. Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature, 330(6146): 401-404.
    [40] Strimmer K, von Haeseler A. 1996. Quartet puzzling: A quartet maximum likelihood method for reconstructing tree topologies. Molecular Biology and Evolution, 13(7): 964-969.
    [41] Swanson KW, Irwin DM, Wilson AC. 1991. Stomach lysozyme gene of the langur monkey: tests for convergence and positive selection. Journal of Molecular Evolution, 33(5): 418-425.
    [42] Takeuchi K, Irwin DM, Gallup M, Shinbrot E, Kai H, Stewart CB, Basbaum C. 1993. Multiple cDNA sequences of bovine tracheal lysozyme. Journal of Biological Chemistry, 268(36): 27440-27446.
    [43] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725-2729.
    [44] Wen Y, Irwin DM. 1999. Mosaic evolution of ruminant stomach lysozyme genes. Molecular Phylogenetics and Evolution, 13(3): 474-482.
    [45] Yu M, Irwin DM. 1996. Evolution of stomach lysozyme: the pig lysozyme gene. Molecular Phylogenetics and Evolution, 5(2): 298-308.
    [46] Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell CP, Sonstegard TS, Marçais G, Roberts M, Subramanian P, Yorke JA, Salzberg SL. 2009. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biology, 10(4): R42.
  • [1] David M. Irwin.  Duplication and diversification of insulin genes in ray-finned fish, Zoological Research. doi: 10.24272/j.issn.2095-8137.2018.052
    [2] Xiu-Feng LI, Chong HAN, Cai-Rong ZHONG, Jun-Qiu XU, Jian-Rong HUANG.  Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I (COI) gene, Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.5.307
    [3] Qiong-Ying TANG, Li-Xia SHI, Fei LIU, Dan YU, Huan-Zhang LIU.  Evolution and phylogenetic application of the MC1R gene in the Cobitoidea (Teleostei: Cypriniformes), Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.5.281
    [4] CHEN Xing, SHEN Yong-Yi, ZHANG Ya-Ping.  Review of mtDNA in molecular evolution studies, Zoological Research. doi: 10.3724/SP.J.1141.2012.06566
    [5] KONG Cheng-Jiang, HUANG Zuo-An, CHEN Jiong, SHI Yu-Hong, LU Xin-Jiang.  Molecular cloning, sequence analysis and expression of ayu complement component C9 gene, Zoological Research. doi: 10.3724/SP.J.1141.2012.02151
    [6] CHANG Yue, FENG Li-Fang, XIONG Jie, MIAO Wei.  Function comparison and evolution analysis of metallothionein gene MTT2 and MTT4 in Tetrahymena thermophila, Zoological Research. doi: 10.3724/SP.J.1141.2011.05476
    [7] MAO Xiu-Guang, WANG Jin-Huan, SU Wei-Ting, WANG Ying-Xiang.  Karyotypic evolution in family Hipposideridae (Chiroptera, Mammalia) revealed by comparative chromosome painting, G- and C-banding, Zoological Research. doi: 10.3724/SP.J.1141.2010.05453
    [8] WEI Yun-hu, ZHANG Yu-jun, CHEN Yuan, MAO Bing-yu.  Expansion of the Actin Gene Family in Amphioxus, Zoological Research. doi: 10.3724/SP.J.1141.2009.05473
    [9] SUN Gui-ling, JIANG Yong-hai, WEN Jian-fan.  Evolution of Metabolic Pathways, Zoological Research. doi: 10.3724/SP.J.1141.2008.04459
    [10] GAO Jia-li, LUO Yu-ping*, LI Si-guang.  Molecular Evolution of miR-34 Gene Family, Zoological Research.
    [11] JIA Hai-bo, ZHOU Li, SHI Yao-hua GUI Jian-fang.  Molecular Cloning and Evolutionary Implications of Growth Hormone/Prolactin Family Gene cDNAs in Grouper Epinephelus coioides, Zoological Research.
    [12] WANG Yu-shan, WANG Zu-wang, WANG De-hua, Zhang Zhi-bin.  Evolution of Endothermy in Animals:A Review, Zoological Research.
    [13] ZHOU Li, GUI Jian-fang.  Evolution of Unisexual Animals, Zoological Research.
    [14] LI Jing-Jing, ZHANG Ya-Ping.  The Genetics and Evolution of the House Mice, Zoological Research.
    [15] YAO Yong-Gang, ZHANG Ya-Ping.  Mitochondrial DNA and Human Evolution, Zoological Research.
    [16] Rao dingqi, Yang datong.  The study of early development and evolution of Torrentophryne aspinia, Zoological Research.
    [17] HUANG Fu-sheng.  The Continenal Drifts and The Evolution of Zoraptera, Zoological Research.
    [18] LI Min-ming.  The Evolution and Taxonomy of Family Dicrocoeliidae, Zoological Research.
    [19] S.J.LEACH J.G.R.HURRELL, N.A.NICOLA, K.R.THULBORN.  Leghaemoglobins:Structure and Evolution, Zoological Research.
    [20] TAN Jia-zhen, HU Kai.  On Two New Alleles of the Color Pattern Gene in the Lady-Beetle,Harmonia Axyridis and Further Proof of The Mosaic Dominance Theory, Zoological Research.
  • 加载中
计量
  • 文章访问数:  546
  • HTML全文浏览量:  56
  • PDF下载量:  1519
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-08
  • 修回日期:  2014-12-02
  • 刊出日期:  2015-01-08

目录

    /

    返回文章
    返回