留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Acoustic signal characteristic detection by neurons in ventral nucleus of the lateral lemniscus in mice

Hui-Hua LIU Cai-Fei HUANG Xin WANG

Hui-Hua LIU, Cai-Fei HUANG, Xin WANG. Acoustic signal characteristic detection by neurons in ventral nucleus of the lateral lemniscus in mice. Zoological Research, 2014, 35(6): 500-509. doi: 10.13918/j.issn.2095-8137.2014.6.500
Citation: Hui-Hua LIU, Cai-Fei HUANG, Xin WANG. Acoustic signal characteristic detection by neurons in ventral nucleus of the lateral lemniscus in mice. Zoological Research, 2014, 35(6): 500-509. doi: 10.13918/j.issn.2095-8137.2014.6.500

Acoustic signal characteristic detection by neurons in ventral nucleus of the lateral lemniscus in mice

doi: 10.13918/j.issn.2095-8137.2014.6.500
基金项目: This study was supported by the National Natural Science Foundation of China (31000493) and the Central China Normal University Independent Scientific Research Project Fund for Youth Scholars (11A01025)
详细信息
    通讯作者:

    Xin WANG

Acoustic signal characteristic detection by neurons in ventral nucleus of the lateral lemniscus in mice

Funds: This study was supported by the National Natural Science Foundation of China (31000493) and the Central China Normal University Independent Scientific Research Project Fund for Youth Scholars (11A01025)
More Information
    Corresponding author: Xin WANG
  • 摘要: Under free field conditions, we used single unit extracellular recording to study the detection of acoustic signals by neurons in the ventral nucleus of the lateral lemniscus (VNLL) in Kunming mouse (Mus musculus). The results indicate two types of firing patterns in VNLL neurons: onset and sustained. The first spike latency (FSL) of onset neurons was shorter than that of sustained neurons. With increasing sound intensity, the FSL of onset neurons remained stable and that of sustained neurons was shortened, indicating that onset neurons are characterized by precise timing. By comparing the values of Q10 and Q30 of the frequency tuning curve, no differences between onset and sustained neurons were found, suggesting that firing pattern and frequency tuning are not correlated. Among the three types of rate-intensity function (RIF) found in VNLL neurons, the proportion of monotonic RIF is the largest, followed by saturated RIF, and non-monotonic RIF. The dynamic range (DR) in onset neurons was shorter than in sustained neurons, indicating different capabilities in intensity tuning of different firing patterns and that these differences are correlated with the type of RIF. Our results also show that the best frequency of VNLL neurons was negatively correlated with depth, supporting the view point that the VNLL has frequency topologic organization.
  • [1] Adams JC. 1997. Projections from octopus cells of the posteroventral cochlear nucleus to the ventral nucleus of the lateral lemniscus in cat and human.Auditory Neuroscience, 3(4): 335-350.
    [2] Aitkin LM, Anderson DJ, Brugge JF. 1970. Tonotopic organization and discharge characteristics of single neurons in nuclei of the lateral lemniscus of the cat.Journal of Neurophysiology, 33(3): 421-440.
    [3] Andrew K, Ellen C. 2009. Functional role of GABAergic and glycinergic inhibition in the intermediate nucleus of the lateral lemniscus of the big brown bat. Journal of Neurophysiology, 101(6): 3135-3146.
    [4] Bal R, Oertel D. 2007. Voltage–activated calcium currents in octopus cells of the mouse cochlear nucleus. Bal R, Oertel D. 2007. Voltage–activated calcium currents in octopus cells of the mouse cochlear nucleus. Journal of the Association for Research in Otolaryngologyl, 8(4): 509-521.
    [5] Bal R, Green GG, Rees A, Sanders DJ. 2002. Firing patterns of inferior colliculus neurons-histology and mechanism to change firing patterns in rat brain slices. Neuroscience Letters, 317(1): 42-46.
    [6] Batra R, Fitzpatrick DC. 1999. Discharge patterns of neurons in the ventral nucleus of the lateral lemniscus of the unanesthetized rabbit.Journal of Neurophysiology, 82(3): 1097-1113.
    [7] Batra R, Fitzpatrick DC. 2002. Monaural and binaural processing in the ventral nucleus of the lateral lemniscus: a major source of inhibition to the inferior colliculus. Hearing Research, 168(1-2): 90-97.
    [8] Benson CG, Cant NB. 2008. The ventral nucleus of the lateral lemniscus of the gerbil (Meriones unguiculatus): organization of connections with the cochlear nucleus and the inferior colliculus. The Journal of Comparative Neurology, 510(6): 673-690.
    [9] Budinger E, Brosch M, Scheich H, Mylius J. 2013. The subcortical auditory structures in the Mongolian Gerbil: II. frequency–related topography of the connections with cortical field AI. The Journal of Comparative Neurology, 521(12): 2772-2797.
    [10] Chen QC, Jen PH. 2000. Bicuculline application affects discharge patterns, rate-intensity functions, and frequency tuning characteristics of bat auditory cortical neurons.Hearing Research, 150(1-2): 161-174.
    [11] Cheng L, Mei HX, Tang J, Fu ZY, Jen PHS, Chen QC. 2013. Bilateral collicular interaction: modulation of auditory signal processing in frequency domain. Neuroscience, 235: 27-39.
    [12] Covey E, Casseday JH. 1991. The monaural nuclei of the lateral lemniscus in an echolocating bat: parallel pathways for analyzing temporal features of sound. The Journal of Neuroscience, 11(11): 3456-3470.
    [13] Glendenning KK, Hutson KA. 1998. Lack of topography in the ventral nucleus of the lateral lemniscus. Microscopy Research and Technique, 41(4): 298-312.
    [14] Goldberg JM, Brownell WE. 1973. Discharge characteristics ofneurons in anteroventral and dorsal cochlear nuclei of cat. Brain Research, 64: 35-54.
    [15] Heil P. 1997. Auditory cortical onset responses revisited. I. First spike timing. Journal of Neurophysiology, 77(5): 2616-2642.
    [16] Huffman RF, Covey E.1995. Origin of ascending projections to the nuclei of the lateral lemniscus in the big brown bat, Eptesicus fuscus. The Journal of Comparative Neurology, 357(4): 532-545.
    [17] Johnston J, Forsythe LD, Kopp–Scheinpflug C. 2010. Going native: voltage–gated potassium channels controlling neuronal excitability [J].The Journal of Physiology, 588(17): 3187-3200.
    [18] Kelly JB, van Adel BA, Ito M. 2009. Anatomical projections of the nuclei of the lateral lemniscus in the albino rat (Rattus norvegicus). The Journal of Comparative Neurology, 512(4): 573-593.
    [19] Kelly JB, Liscum A, van Adel B, Ito M. 1998. Projections from the superior olive and lateral lemniscus to tonotopic regions of the rat's inferior colliculus. Hearing Research, 116(1-2): 43-54.
    [20] Mei HX, Cheng L, Tang J, Fu ZY, Wang X, Jen PHS, Chen QC. 2012. Bilateral collicular interaction: modulation of auditory signal processing in amplitude domain. Plos One, 7(7): e41311.
    [21] Nayagam DA, Clarey JC, Paolini AG. 2005. Powerful, onset inhibition in the ventral nucleus of the lateral lemniscus. Journal of Neurophysiology, 94(2): 1651-1654.
    [22] Nayagam DA, Clarey JC, Paolini AG. 2006. Intracellular responses and morphology of rat ventral complex of the lateral lemniscus neurons in vivo. The Journal of Comparative Neurology, 498(2): 295-315.
    [23] Paxinos G, Franklin KBJ. 2001. The Mouse Brain in Stereotaxic Coordinates. 2nd ed. San Diego: Academic Press.
    [24] Pollak GD, Burger RM, Klug A. 2003. Dissecting the circuitry of the auditory system. Trends in Neurosciences, 26(1): 33-39.
    [25] Pollak GD, Gittelman JX, Li N, Xie R. 2011. Inhibitory projections from the ventral nucleus of the lateral lemniscus and superior paraolivary nucleus create directional selectivity of frequency modulations in the inferior colliculus: a comparison of bats with other mammals. Hearing Research, 273(1-2): 134-144.
    [26] Prather JF. 2013. Auditory signal processing in communication: perception and performance of vocal sounds. Hearing Research, 305: 144-155.
    [27] Qi QZ, Si WJ, Luo F, Wang X. 2013. Intensity tuning of neurons in the primary auditory cortex of albino mouse. Progress in Biochemistry and Biophysics, 40(4): 365-373(in Chinese)
    [28] Sanes DH, Rubel EW. 1988. The ontogeny of inhibition and excitation in the gerbil lateral superior olive. The Journal of Neuroscience, 8(2): 682-700.
    [29] Schofield BR, Cant NB. 1997. Ventral nucleus of the lateral lemniscus in guinea pigs: cytoarchitecture and inputs from the cochlear nucleus. The Journal of Comparative Neurology, 379(3): 363-385.
    [30] Suga N.1997. Tribute to yasuji katsuki's major findings: sharpening of frequency tuning in the central auditory system. Acta Otolaryngologica Supplement, 532: 9-12.
    [31] Suneja SK, Benson CG, Gross J, Potashner SJ. 1995. Evidence for glutamatergic projections from the cochlear nucleus to the superior olive and the ventral nucleus of the lateral lemniscus. Journal of Neurochemistry, 64(1): 161-171.
    [32] Tan AY Y, Atencio CA, Polley DB, Merzenich MM, Schreiner CE. 2007. Unbalanced synaptic inhibition can create intensity-tuning auditory cortex neurons. Neuroscience, 146(1): 449-462.
    [33] Tan X, Wang X, Yang W, Xiao Z. 2008. First spike latency and spike count as functions of tone amplitude and frequency in the inferior colliculus of mice. Hearing Research, 235(1-2): 90-104.
    [34] Tang J, Xiao ZJ, Shen JX. 2008. Delayed inhibition creates amplitude tuning of mouse inferior collicular neurons. Neuroreport, 19(15): 1445-1449.
    [35] Tang J, Wu FJ, Wang D, Jen PHS, Chen QC. 2007. The amplitude sensitivity of mouse inferior collicular neurons in the presence of weak noise. Chinese Journal of Physiology, 50: 187-198.
    [36] Voytenko SV, Galazyuk AV. 2008. Timing of sound–evoked potentials and spike responses in the inferior colliculus of awake bats. Neuroscience, 155(3): 923-936.
    [37] Wang X, Jen PHS, Wu FJ, Chen QC. 2007. Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition. Brain Research, 1167: 80-91.
    [38] Wu GK, Li P, Tao HW, Zhang L. 2006. Nonmonotonic synaptic excitation and imbalanced inhibition underlying cortical intensity tuning. Neuron, 52(4): 705-715.
    [39] Xie R, Gittelman JX, Pollak GD. 2007. Rethinking tuning: in vivo whole–cell recordings of the inferior colliculus in awake bats. The Journal of Neuroscience, 27(35): 9469-9481.
    [40] Yavuzoglu A, Schofield BR, Wenstrup JJ. 2010. Substrates of auditory frequency integration in a nucleus of the lateral lemniscus. Neuroscience, 169(2): 906-919.
    [41] Zhang H, Kelly JB. 2006. Responses of neurons in the rat's ventral nucleus of the lateral lemniscus to monaural and binaural tone bursts. Journal of Neurophysiology, 95(4): 2501-2512.
    [42] Zhang J, Qiu Q, Tang J, Xiao ZJ, Shen JX. 2005. The effect of bicuculline and strychnine on the latency of neuron inferior colliculus and auditory cortex of BALB/c mouse. Progress in Biochemistry and Biophysics, 32(11): 1055-1060
    [43] Zhou XM, Jen PHS. 2000. Corticofugal inhibition compresses all types of rate-intensity functions of inferior collicular neurons in the big brown bat. Brain Research, 881: 62-68.
  • [1] Li-Fang JIN, Jin-Song LI.  Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems, Zoological Research. doi: 10.13918/j.issn.2095-8137.2016.4.205
    [2] Chuan-Wang TONG, Zi-Lu WANG, Peng LI, Hui ZHU, Cui-Yun CHEN, Tian-Miao HUA.  Effects of senescence on the expression of BDNF and TrkB receptor in the lateral geniculate nucleus of cats, Zoological Research. doi: 10.13918/j.issn.2095-8137.2015.1.48
    [3] Guo-Hua DING, Zhi-Hua LIN, Li-Hua ZHAO, Xiao-Li FAN, Li WEI.  Effects of light intensity on activity in four sympatric anuran tadpoles, Zoological Research. doi: 10.13918/j.issn.2095-8137.2014.4.332
    [4] Ru-Jiang LI, Shu-Dong QIU, Hong TIAN, Sheng-Wei ZHOU.  Diabetes induced by multiple low doses of STZ can be spontaneously recovered in adult mice, Zoological Research. doi: 10.11813/j.issn.0254-5853.2013.3.0238
    [5] SHI Mei-Lian, XU Ping, YIN Xiao-Shu, YANG Wei-Wei, GU Mei-Er, YU LI-Ping, LIU Gui-Jie, WU Bao-Jin.  Phenotype analysis and mutant gene location of ventral yellow mouse (VYSlac), Zoological Research. doi: 10.3724/SP.J.1141.2012.03290
    [6] ZHANG Fu-Xiang, YANG Yi-Bin, KE Gui-Bao, CHEN Ying, XU Xin-Mei, TAN Zhou-Ke, RONG Song.  Mice cope with parabiosis — Assessment of their physiological changes of life, Zoological Research. doi: 10.3724/SP.J.1141.2012.05493
    [7] ZHU Na, JIA Hong-Xiang, LIU Xiao-Kun, ZHAO Xiao-E, WEI Qiang, MA Bao-Hua.  Measuring the estrus cycle and its effect on superovulation in mice, Zoological Research. doi: 10.3724/SP.J.1141.2012.03276
    [8] CUI Shu-fang, QU Xiu-hua, HAN Shi-zhong, YU Chen-lin, SUN Wei, TANG Qiu.  Application of Dual-color Fluorescence Hybridization Chip Technique in the Monitoring of the Genetic Quality of Inbred Mice Strains, Zoological Research.
    [9] DING Fang, ZHOU Hong-lin, LIU Yang, MA Lan, SU Ying, DU Ling.  Effects of Glucose on Development of ICR Mouse Embryosin vitro, Zoological Research.
    [10] HE Zhi-xian, GAO Yun-fang, HU Lin-lin.  Comparisons on the Proportion of Type Ⅰand Ⅱ Fibers in Soleus Muscle and the Visceral Indexes in Rats and Mice, Zoological Research.
    [11] CAO Hong-guo, LIU Jun-ping, ZHANG Yong.  Application of Cultural System Improved in Mouse Somatic Cell Nuclear Transfer and Isolation of ES Cells from Reconstructed Embryos, Zoological Research.
    [12] LI Xiang-yun, DI Ke-qian, WEI Wei.  Effects of Genetic Background on Establishment of Mouse Embryonic Stem Cells, Zoological Research.
    [13] GUAN Mo, YANG Shi-hua, SI Wei, CAI Ke-jun, JI Wei-zhi.  Effect of Bovine Serum Albumin on Vitrification of Pronuclear-Stage Mouse Embryo, Zoological Research.
    [14] TANG Jia, PI Jian-hui, WANG Dan, WU Fei-jian, CHEN Qi-cai.  Effect of Weak Noise on the Frequency Tuning of Mouse Inferior Collicular Neurons, Zoological Research.
    [15] WANG Hong, ZHANG Yuan-Qiang, DING Yu-Qiang.  Immunohistochemical Localization of Neurokinin B Receptor (NK3r) in the Mouse Gastrointestinal Tract, Zoological Research.
    [16] GAO Fei, MA Jie, FU Guo-Qiang, WEI Peng, FENG Qiang, LIU Yi-Xun.  Expression of TGF-β in the Mouse Placenta, Zoological Research.
    [17] XIONG Yan, FU Li-rong, ZHANG Xin-wen, ZHANG Lan, WUYUN Ge-ri-le, WANG Shuang-xi.  Effects of Stimulation of Nucleus Lateral Magnocellularis of Anterior Neostriatum on Vocalization and Respiration in Carduelis spinus, Zoological Research.
    [18] CAO Yu-jing, JIANG Guang-tai, ZENG Guo-qing.  Inhibition of Mouse Implantation by Proteinase Inhibitors, Zoological Research.
    [19] ZHOU Xiao-ming, SUN Xin-de.  The Influence on The Characteristics of Frequency Tuning of Bats'inferior Collicular Neurons by Early Sound Exposure, Zoological Research.
    [20] LIU Rui-qing, GUO Jian-min, ZHANG Yao-ping, DIN Lin-hua.  Karyotype Analysis of The Mouse Ascites Hepatoma, Zoological Research.
  • 加载中
计量
  • 文章访问数:  480
  • HTML全文浏览量:  44
  • PDF下载量:  875
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-15
  • 修回日期:  2014-06-01
  • 刊出日期:  2014-11-08

目录

    /

    返回文章
    返回