Volume 36 Issue 3
May  2015
Turn off MathJax
Article Contents
Si-Wei ZHANG, Jiang-Nan FENG, Yi CAO, Li-Ping MENG, Shu-Lin WANG. Autophagy prevents autophagic cell death in Tetrahymena in response to oxidative stress. Zoological Research, 2015, 36(3): 167-173.
Citation: Si-Wei ZHANG, Jiang-Nan FENG, Yi CAO, Li-Ping MENG, Shu-Lin WANG. Autophagy prevents autophagic cell death in Tetrahymena in response to oxidative stress. Zoological Research, 2015, 36(3): 167-173.

Autophagy prevents autophagic cell death in Tetrahymena in response to oxidative stress

More Information
  • Corresponding author: Shu-Lin WANG
  • Received Date: 2015-03-16
  • Rev Recd Date: 2015-05-07
  • Publish Date: 2015-05-08
  • Autophagy is a major cellular pathway used to degrade long-lived proteins or organelles that may be damaged due to increased reactive oxygen species (ROS) generated by cellular stress. Autophagy typically enhances cell survival, but it may also act to promote cell death under certain conditions. The mechanism underlying this paradox, however, remains unclear. We showed that Tetrahymena cells exerted increased membrane-bound vacuoles characteristic of autophagy followed by autophagic cell death (referred to as cell death with autophagy) after exposure to hydrogen peroxide. Inhibition of autophagy by chloroquine or 3-methyladenine significantly augmented autophagic cell death induced by hydrogen peroxide. Blockage of the mitochondrial electron transport chain or starvation triggered activation of autophagy followed by cell death by inducing the production of ROS due to the loss of mitochondrial membrane potential. This indicated a regulatory role of mitochondrial ROS in programming autophagy and autophagic cell death in Tetrahymena. Importantly, suppression of autophagy enhanced autophagic cell death in Tetrahymena in response to elevated ROS production from starvation, and this was reversed by antioxidants. Therefore, our results suggest that autophagy was activated upon oxidative stress to prevent the initiation of autophagic cell death in Tetrahymena until the accumulation of ROS passed the point of no return, leading to delayed cell death in Tetrahymena.
  • loading
  • [1]
    Amaravadi RK, Yu DN, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB. 2007. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. Journal of Clinical Investigation, 117(2): 326-336.
    [2]
    Baehrecke EH. 2005. Autophagy: Dual roles in life and death?. Nature Reviews Molecular Cell Biology, 6(6): 505-510.
    [3]
    Bedard K, Krause KH. 2007. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87(1): 245-313.
    [4]
    Ejercito M, Wolfe J. 2003. Caspase-like activity is required for programmed nuclear elimination during conjugation in Tetrahymena. Journal of Eukaryotic Microbiology, 50(6): 427-429.
    [5]
    Endoh H, Kobayashi T. 2006. Death harmony played by nucleus and mitochondria: nuclear apoptosis during conjugation of Tetrahymena. Autophagy, 2(2): 129-131.
    [6]
    Kang C, You YJ, Avery L. 2007. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes & Development, 21(17): 2161-2171.
    [7]
    Klionsky DJ. 2007. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 8(11): 931-937.
    [8]
    Kobayashi T, Endoh H. 2003. Caspase-like activity in programmed nuclear death during conjugation of Tetrahymena thermophila. Cell Death and Differentiation, 10(6): 634-640.
    [9]
    Kroemer G, Levine B. 2008. Autophagic cell death: the story of a misnomer. Nature Reviews Molecular Cell Biology, 9(12): 1004-1010.
    [10]
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G. 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death and Differentiation, 16(1): 3-11.
    [11]
    Lambeth JD. 2004. NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 4(3): 181-189.
    [12]
    Levine B, Klionsky DJ. 2004. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Developmental Cell, 6(4): 463-477.
    [13]
    Levine B, Kroemer G. 2008. Autophagy in the pathogenesis of disease. Cell, 132(1): 27-42.
    [14]
    Li WZ, Zhang SW, Numata O, Nozawa Y, Wang SL. 2009. TpMRK regulates cell division of Tetrahymena in response to oxidative stress. Cell Biochemistry and Function, 27(6): 364-369.
    [15]
    Lu E, Wolfe J. 2001. Lysosomal enzymes in the macronucleus of Tetrahymena during its apoptosis-like degradation. Cell Death and Differentiation, 8(3): 289-297.
    [16]
    Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB. 2005. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 120(2): 237-248.
    [17]
    Maclean KH, Dorsey FC, Cleveland JL, Kastan MB. 2008. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. Journal of Clinical Investigation, 118(1): 79-88.
    [18]
    Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. 2007. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8(9): 741-752.
    [19]
    Nakashima S, Wang SL, Hisamoto N, Sakai H, Andoh M, Matsumoto K, Nozawa Y. 1999. Molecular cloning and expression of a stress-responsive mitogen-activated protein kinase-related kinase from Tetrahymena cells. Journal of Biological Chemistry, 274(15): 9976-9983.
    [20]
    Poole B, Ohkuma S. 1981. Effect of weak bases on the intralysosomal ph in mouse peritoneal macrophages. The Journal of Cell Biology, 90(3): 665-669.
    [21]
    Scherz-Shouval R, Elazar Z. 2007. ROS, mitochondria and the regulation of autophagy. Trends in Cell Biology, 17(9): 422-427.
    [22]
    Shintani T, Klionsky DJ. 2004. Autophagy in health and disease: A double-edged sword. Science, 306(5698): 990-995.
    [23]
    Wang SL, Nakashima S, Numata O, Fujiu K, Nozawa Y. 1999. Molecular cloning and cell-cycle-dependent expression of the acetyl-CoA synthetase gene in Tetrahymena cells. Biochemical Journal, 343(2): 479-485.
    [24]
    Wang S, Nakashima S, Sakai H, Numata O, Fujiu K, Nozawa Y. 1998. Molecular cloning and cell-cycle-dependent expression of a novel NIMA (never-in-mitosis in Aspergillus nidulans)-related protein kinase (TpNrk) in Tetrahymena cells. The Biochemical Journal, 334: 197-203.
  • Relative Articles

    [1] Dan-Chen Zhang, Rong Chen, Yi-Hui Cai, Jing-Jing Wang, Chang Yin, Kang Zou. Hyperactive reactive oxygen species impair function of porcine Sertoli cells via suppression of surface protein ITGB1 and connexin-43. Zoological Research, 2020, 41(2): 203-207.  doi: 10.24272/j.issn.2095-8137.2020.024
    [2] Qiong-Ya Zhao, Ling-Hong Ge, Kun Zhang, Hai-Feng Chen, Xin-Xin Zhan, Yue Yang, Qing-Lin Dang, Yi Zheng, Huai-Bin Zhou, Jian-Xin Lyu, He-Zhi Fang. Assessment of mitochondrial function in metabolic dysfunction-associated fatty liver disease using obese mouse models. Zoological Research, 2020, 41(5): 539-551.  doi: 10.24272/j.issn.2095-8137.2020.051
    [3] Hong-Fa Yan, Qing-Zhang Tuo, Qiao-Zhi Yin, Peng Lei. The pathological role of ferroptosis in ischemia/reperfusion-related injury. Zoological Research, 2020, 41(3): 220-230.  doi: 10.24272/j.issn.2095-8137.2020.042
    [4] CHANG Yue, FENG Li-Fang, XIONG Jie, MIAO Wei. Function comparison and evolution analysis of metallothionein gene MTT2 and MTT4 in Tetrahymena thermophila. Zoological Research, 2011, 32(5): 476-484.  doi: 10.3724/SP.J.1141.2011.05476
    [5] LU Xing-Yi, XIONG Jie, YUAN Dong-Xia, MIAO Wei. Alternative splicing of an ATP-binding cassette transporter ABCC10 in Tetrahymena thermophila. Zoological Research, 2011, 32(6): 605-610.  doi: 10.3724/SP.J.1141.201106605
    [6] FENG Li-Fang, CHANG Yue, YUAN Dong-Xia, MIAO Wei. Expression analysis of 5 hsp70 genes in Tetrahymena thermophila. Zoological Research, 2011, 32(3): 267-276.  doi: 10.3724/SP.J.1141.2011.03267
    [7] TIAN Hai-Feng, WEN Jian-Fan. Diversity of Parasitic Protozoan Mitochondria and Adaptive Evolution. Zoological Research, 2010, 31(1): 35-38.  doi: 10.3724/SP.J.1141.2010.01035
    [8] ZHAO Tong-biao, ZHAO Xin-quan, CHANG Zhi-jie, SUN Ping, XU Shi-xiao, ZHAO Wei. Tissue Specific Expression of Plateau Pikas (Ochotona curzoniae) HIF-1α mRNA Under Normal Oxygen. Zoological Research, 2004, 25(2): 132-136.
    [9] DONG Yun-wei, NIU Cui-juan, BAO Lei, LI Qing-fen, HUANG Chen-xi. Method for Extracting DNA from Single Rotifer and Sequencing Partical Mitochondria Cytochrome Oxidase Subunit Ⅰ (COⅠ) Gene. Zoological Research, 2002, 23(1): 81-83.
    [10] MIAO Wei, YU Yu-He, SHEN Yun-Fen. Phylogenetic Relationships among Tetrahymena shanghaienisis and two Strains of Tetrahymena thermophila Inferred from ITS-1 Sequences. Zoological Research, 2001, 22(4): 265-269.
    [11] YING Xue-Ping, YANG Wan-Xi. Mitochondrial Changes During Vitellogenesis in Oocytes of Bullacta exarata. Zoological Research, 2001, 22(5): 379-382.
    [12] ZHENG De-shu. Apoptosis and Programmed Cell Death. Zoological Research, 2000, 21(1): 17-22.
    [13] WANG Jin-jun, ZHAO Zhi-mo, LI Long-shu. Study on Tolerance to Oxygen Deficiency,Genetic Stability and Ecological Fitness of Psocid,Liposcelis bostrychophila Badonnel (Psoceoptera:Iposcelididae). Zoological Research, 1999, 20(2): 104-110.
    [14] SUN Xue-guang, CAO En-hua, QIN Jing-fen, LIU Mao-zi, BAI Chun-li. Dnase Ⅰ-Resistant and Species in HeLa Cell and Atomic Force Microscopic Observation. Zoological Research, 1999, 20(1): 17-20.
    [15] WANG De-hua, SUN Ru-yong, WANG Zu-wang. Effects of Photoperiod and Temperature on Browh Adipose Tissue Thermogenic Properties in Plateau Pika. Zoological Research, 1999, 20(5): 347-351.
    [16] WU Chuan-fen, DAI Jia-ling, YANG Xin-lin, LI Jing-yan, WANG Yong-chao. The Detection of Centromere Proteins in Tetrahymena thermophila. Zoological Research, 1996, 17(4): 495-499.
    [17] GONG Zhi-hai, QU Bu-hua. Studies of Reactive Sensitivity of Cholinesterases From Sciaemidae Fish Muscle To Organophosphate Compoundes. Zoological Research, 1994, 15(1): 65-69.
    [18] SHEN Xi-qi, ZHANG Zuo-ren. A Long- Term Maintenance Method For Tetrahymena. Zoological Research, 1985, 6(zk): 105-108.
    [19] LI Ling-yan. Cell Theory. Zoological Research, 1982, 3(zk): 373-374.
    [20] GU Ben-xian, DU Yu-Cang. The Effect of Cardiotoxin (Naja naja atra) on rat Liver Mitochondria. Zoological Research, 1981, 2(zk): 39-41.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (649) PDF downloads(1686) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return