Volume 40 Issue 6
Nov.  2019
Turn off MathJax
Article Contents
James Mwangi, Xue Hao, Ren Lai, Zhi-Ye Zhang. Antimicrobial peptides: new hope in the war against multidrug resistance. Zoological Research, 2019, 40(6): 488-505. doi: 10.24272/j.issn.2095-8137.2019.062
Citation: James Mwangi, Xue Hao, Ren Lai, Zhi-Ye Zhang. Antimicrobial peptides: new hope in the war against multidrug resistance. Zoological Research, 2019, 40(6): 488-505. doi: 10.24272/j.issn.2095-8137.2019.062

Antimicrobial peptides: new hope in the war against multidrug resistance

doi: 10.24272/j.issn.2095-8137.2019.062
Funds:  the National Natural Science Foundation of China(21761142002 and 31801975);Chinese Academy of Sciences(XDB31000000);Yunnan Province Grant(2015HA023)
More Information
  • Corresponding author: Zhi-Ye Zhang
  • Received Date: 2019-07-23
  • Accepted Date: 2019-09-26
  • Publish Date: 2019-10-14
  • The discovery of antibiotics marked a golden age in the revolution of human medicine. However, decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevitable if stringent measures are not adopted to curb the rapid emergence and spread of multidrug resistance and the indiscriminate use of antibiotics. In hospital settings, multidrug resistant (MDR) pathogens, including carbapenem-resistant Pseudomonas aeruginosa, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and extended-spectrum β-lactamases (ESBL) bearing Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae are amongst the most problematic due to the paucity of treatment options, increased hospital stay, and exorbitant medical costs. Antimicrobial peptides (AMPs) provide an excellent potential strategy for combating these threats. Compared to empirical antibiotics, they show low tendency to select for resistance, rapid killing action, broad-spectrum activity, and extraordinary clinical efficacy against several MDR strains. Therefore, this review highlights multidrug resistance among nosocomial bacterial pathogens and its implications and reiterates the importance of AMPs as next-generation antibiotics for combating MDR superbugs.
  • loading
  • Relative Articles

    [1] Fen Zhang, Zhi-Lai Guo, Yan Chen, Li Li, Hai-Ning Yu, Yi-Peng Wang. Effects of C-terminal amidation and heptapeptide ring on the biological activities and advanced structure of amurin-9KY, a novel antimicrobial peptide identified from the brown frog, Rana kunyuensis. Zoological Research, 2019, 40(3): 198-204.  doi: 10.24272/j.issn.2095-8137.2018.070
    [2] Vinayakumar Siragam, Gary Wong, Xiang-Guo Qiu. Animal models for filovirus infections. Zoological Research, 2018, 39(1): 15-24.  doi: 10.24272/j.issn.2095-8137.2017.053
    [3] Jing Wang, Zhen-Bao Ma, Zhen-Ling Zeng, Xue-Wen Yang, Ying Huang, Jian-Hua Liu. Response to Comment on “The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes”. Zoological Research, 2017, 38(4): 212-212.  doi: 10.24272/j.issn.2095-8137.2017.024
    [4] Mashkoor Mohsin, Shahbaz Raza. Comment on “The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes”. Zoological Research, 2017, 38(4): 211-211.  doi: 10.24272/j.issn.2095-8137.2017.023
    [5] Jing Wang, Zhen-Bao Ma, Zhen-Ling Zeng, Xue-Wen Yang, Ying Huang, Jian-Hua Liu. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zoological Research, 2017, 38(2): 55-80.  doi: 10.24272/j.issn.2095-8137.2017.003
    [6] Cun-Bao LIU, Bin SHAN, Hong-Mei BAI, Jing TANG, Long-Zong YAN, Yan-Bing MA. Hydrophilic/hydrophobic characters of antimicrobial peptides derived from animals and their effects on multidrug resistant clinical isolates. Zoological Research, 2015, 36(1): 41-47.  doi: 10.13918/j.issn.2095-8137.2015.1.41
    [7] Bai-Yu ZHANG, Si-Man LI, Zheng-Hua GAO, Ji-Hong SHEN. Protective effects of snake venom antimicrobial peptide OH-CATH on E. coli induced rabbit urinary tract infection models. Zoological Research, 2013, 34(1): 25-32.  doi: 10.3724/SP.J.1141.2013.01027
    [8] LI Sheng-An, LEE Wen-Hui, ZHANG Yun. Two bacterial infection models in tree shrew for evaluating the efficacy of antimicrobial agents. Zoological Research, 2012, 33(1): 1-6.  doi: 10.3724/SP.J.1141.2012.01001
    [9] GUANG Hui-Juan, LI Zheng, WANG Yi-Peng, LAI Ren, YU Hai-Ning. Progress in cathelicidins antimicrobial peptides research. Zoological Research, 2012, 33(5): 523-526.  doi: 10.3724/SP.J.1141.2012.05523
    [10] WANG Yi-Peng, LAI Ren. Insect Antimicrobial Peptides: Structures, Properties and Gene Regulation. Zoological Research, 2010, 31(1): 27-34.  doi: 10.3724/SP.J.1141.2010.01027
    [11] Chen Xin-xin, Yu guo-yu, ZHAN Yan, Zhang Yun, Shen Ji-hong, Lee We. Effects of the Antimicrobial Peptide OH-CATH on Escherichia coli. Zoological Research, 2009, 30(2): 171-177.  doi: 10.3724/SP.J.1141.2009.02171
    [12] ZHANG Ying-xia, ZOU Ai-hui, MANCHU Ri-ga, ZHOU Yong-can, WANG Shi-feng. Purification and Antimicrobial Activity of Antimicrobial Protein from Brown-spotted Grouper, Epinephelus fario. Zoological Research, 2008, 29(6): 627-632.  doi: 10.3724/SP.J.1141.2008.06627
    [13] Olusola O. ODEYEMI, Bernice M. OYEDARE, Michael O. ASHAMO. Resistance of Seven Biscuit Types to Infestation by Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). Zoological Research, 2005, 26(3): 300-304.
    [14] SHUAI Xia, WANG Jin-jun. Change in Esterase Activity and Content During the Selection of Resistance to Alphamethrin in Myzus persicae. Zoological Research, 2005, 26(1): 101-105.
    [15] AN Xian-hui, LV Yi, LI Wei-guo, LIANG Jian-guo, XU Chun-hua, ZHANG Chong-xing et al.. Antimicrobial Peptides Purified from Penus chinensis. Zoological Research, 2005, 26(4): 410-415.
    [16] LAI Ren, LIANG Jian-guo, ZHANG Yun. Antimicrobial Peptides in Amphibian Skins and Their Application. Zoological Research, 2004, 25(5): 465-468.
    [17] SUN Jun, ZHAI Wan-yin, DING Xiang-huan, GU Fu-kang. Effects of Symbiont on the Morphology,Growth,Resistance to Oxidation,and Saccharide Content of Hosts in the Paramecium bursaria-Chlorella System. Zoological Research, 2003, 24(3): 191-195.
    [18] YI Ting-fang, HU Wei-jun, LIANG Song-ping. Purification and Identification of Huwentoxin-Ⅵ,a Neurotoxic Peptide from the Venom of Selenocosmia huwena. Zoological Research, 2002, 23(6): 463-466.
    [19] LAI Ren, YE Wen-juan, RAN Yong-lu, LU Shun-qing, YANG Da-tong. Anti-Microbial Peptide From The Skin Secretion of Bombina maxima. Zoological Research, 1998, 19(4): 257-262.
    [20] XU Yu-cheng, ZHANG Shuang-quan, DAI Zhu-ying. Studies on Antitumor Efficacy of Antibacterial Peptide From The Silkworm,Bombyx mori. Zoological Research, 1998, 19(4): 263-268.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2945) PDF downloads(1512) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return