Volume 40 Issue 3
May  2019
Turn off MathJax
Article Contents

Xin-Jiang Lu, Jiong Chen. Specific function and modulation of teleost monocytes/macrophages: polarization and phagocytosis[J]. Zoological Research, 2019, 40(3): 146-150. doi: 10.24272/j.issn.2095-8137.2019.035
Citation: Xin-Jiang Lu, Jiong Chen. Specific function and modulation of teleost monocytes/macrophages: polarization and phagocytosis[J]. Zoological Research, 2019, 40(3): 146-150. doi: 10.24272/j.issn.2095-8137.2019.035

Specific function and modulation of teleost monocytes/macrophages: polarization and phagocytosis

doi: 10.24272/j.issn.2095-8137.2019.035
Funds:  This study was supported by the National Natural Science Foundation of China (31772876, 41776151), Natural Science Foundation of Zhejiang Province (LZ18C190001, LR18C040001), Scientific Innovation Team Project of Ningbo (2015C110018), and K.C. Wong Magna Fund in Ningbo University
More Information
  • Corresponding author: Jiong Chen
  • Received Date: 2018-10-10
  • Publish Date: 2019-05-18
  • Macrophages exist in most tissues and play a variety of functions in vertebrates. Teleost fish species are found in most aquatic environments throughout the world and are quite diverse for a group of vertebrate animals. Due to whole genome duplication and environmental adaptation, teleost monocytes/macrophages possess a variety of different functions and modulations compared with those of mammals. A deeper understanding of teleost monocytes/macrophages in the immune system will not only help develop teleost-specific methods of disease prevention but will also help improve our understanding of the various immune mechanisms in mammals. In this review, we summarize the differences in polarization and phagocytosis of teleost and mammalian macrophages to improve our understanding of the various immune mechanisms in vertebrates.
  • 加载中
  • [1]
    null Aghaallaei N , Bajoghli B , Schwarz H , Schorpp M , Boehm T . 2010. Characterization of mononuclear phagocytic cells in medaka fish transgenic for a cxcr3a: gfp reporter. Proceedings of the National Academy of Sciences of the United States of America, 107(42): 18079–18084.
    null Arranz A , Doxaki C , Vergadi E , Martinez De La Torre Y, Vaporidi K , Lagoudaki ED , Ieronymaki E , Androulidaki A , Venihaki M , Margioris AN, Stathopoulos EN , Tsichlis PN , Tsatsanis C . 2012. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proceedings of the National Academy of Sciences of the United States of America, 109(24): 9517–9522.
    null Bennani N , Schmid-Alliana A , Lafaurie M . 1995. Evaluation of phagocytic activity in a teleost fish, Dicentrarchus labrax . Fish & Shellfish Immunology, 5(3): 237–246.
    null Bilej M , De Baetselier P , Beschin A . 2000. Antimicrobial defense of the earthworm. Folia Microbiologica, 45(4): 283.
    null Blidner AG , Méndez-Huergo SP , Cagnoni AJ , Rabinovich GA . 2015. Re-wiring regulatory cell networks in immunity by galectin-glycan interactions. Febs Letters, 589(22): 3407–3418.
    null Bromley SK , Mempel TR , Luster AD . 2008. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nature Immunology, 9(9): 970–980.
    null Bystrom J , Evans I , Newson J , Stables M , Toor I , Van Rooijen N , Crawford M , Colville-Nash P , Farrow S , Gilroy DW . 2008. Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood, 112(10): 4117–4127.
    null Chadzinska M , Leon-Kloosterziel KM , Plytycz B , Lidy Verburg-Van Kemenade BM . 2008. In vivo kinetics of cytokine expression during peritonitis in carp: evidence for innate and alternative macrophage polarization. Developmental & Comparative Immunology, 32(5): 509–518.
    null Chen F , Lu XJ , Nie L , Ning YJ , Chen J . 2018. Molecular characterization of a CC motif chemokine 19-like gene in ayu (Plecoglossus altivelis) and its role in leukocyte trafficking. Fish & Shellfish Immunology, 72: 301–308.
    null Dickerson HW , Findly RC . 2017. Vertebrate adaptive immunity—comparative insights from a teleost model. Frontiers in Immunology, 8: 1379.
    null Esteban Má , Cuesta A , Chaves-Pozo E , Meseguer J . 2015. Phagocytosis in teleosts. implications of the new cells involved. Biology, 4(4): 907–922.
    null Franz KM , Kagan JC . 2017. Innate immune receptors as competitive determinants of cell fate. Molecular Cell, 66(6): 750–760.
    null Geissmann F , Manz MG , Jung S , Sieweke MH , Merad M , Ley K . 2010. Development of monocytes, macrophages, and dendritic cells. Science, 327(5966): 656–661.
    null Grayfer L , Kerimoglu B , Yaparla A , Hodgkinson JW , Xie J , Belosevic M . 2018. Mechanisms of fish macrophage antimicrobial immunity. Frontiers in Immunology, 9: 1105.
    null Hodgkinson JW , Fibke C , Belosevic M . 2017. Recombinant IL-4/13A and IL-4/13B induce arginase activity and down-regulate nitric oxide response of primary goldfish (Carassius auratus L.) macrophages. Developmental & Comparative Immunology, 67: 377–384.
    null Hodgkinson JW , Grayfer L , Belosevic M . 2015. Biology of bony fish macrophages. Biology, 4(4): 881–906.
    null Iliev DB , Roach JC , Mackenzie S , Planas JV , Goetz FW . 2005. Endotoxin recognition: in fish or not in fish?. Febs Letters, 579(29): 6519–6528.
    null Joerink M , Ribeiro CMS , Stet RJM , Hermsen T , Savelkoul HFJ , Wiegertjes GF . 2006. Head kidney-derived macrophages of common carp (Cyprinus carpio L.) show plasticity and functional polarization upon differential stimulation. The Journal of Immunology, 177(1): 61–69.
    null Lawrence T , Natoli G . 2011. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature Reviews Immunology, 11(11): 750–761.
    null Leal E , Zarza C , Tafalla C . 2017. Effect of vitamin C on innate immune responses of rainbow trout (Oncorhynchus mykiss) leukocytes. Fish & Shellfish Immunology, 67: 179–188.
    null Li J , Barreda DR , Zhang YA , Boshra H , Gelman AE , Lapatra S , Tort L , Sunyer JO . 2006. B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities. Nature Immunology, 7(10): 1116–1124.
    null Lingnau M , H?flich C , Volk HD , Sabat R , D?cke WD . 2007. Interleukin-10 enhances the CD14-dependent phagocytosis of bacteria and apoptotic cells by human monocytes. Human Immunology, 68(9): 730–738.
    null Lu XJ , Chen Q , Rong YJ , Chen F , Chen J . 2017. CXCR3.1 and CXCR 3.2 differentially contribute to macrophage polarization in teleost fish. The Journal of Immunology, 198(12): 4692–4706.
    null Lv JZ , He XY , Wang HT , Wang ZH , Kelly GT , Wang XJ , Chen Y , Wang T , Qian ZQ . 2017. TLR4-NOX2 axis regulates the phagocytosis and killing of mycobacterium tuberculosis by macrophages. BMC Pulmonary Medicine, 17(1): 194.
    null Mackintosh C , Ferrier DEK . 2017. Recent advances in understanding the roles of whole genome duplications in evolution. F1000 Research, 6: 1623.
    null Makrinos DL , Bowden TJ . 2016. Natural environmental impacts on teleost immune function. Fish & Shellfish Immunology, 53: 50–57.
    null Meng Z , Zhang XY , Guo J , Xiang LX , Shao JZ . 2012. Scavenger receptor in fish is a lipopolysaccharide recognition molecule involved in negative regulation of NF-κB activation by competing with TNF receptor-associated factor 2 recruitment into the TNF-α signaling pathway. The Journal of Immunology, 189(8): 4024–4039.
    null Murray PJ . 2018. Immune regulation by monocytes. Seminars in Immunology, 35: 12–18.
    null Nagasawa T , Nakayasu C , Rieger AM , Barreda DR , Somamoto T , Nakao M . 2014. Phagocytosis by thrombocytes is a conserved innate immune mechanism in lower vertebrates. Frontiers in Immunology, 5: 445.
    null Neves JV , Caldas C , Vieira I , Ramos MF , Rodrigues PNS . 2015. Multiple hepcidins in a teleost fish, Dicentrarchus labrax: different hepcidins for different roles. The Journal of Immunology, 195(6): 2696–2709.
    null Neyen C , Lemaitre B . 2016. Sensing gram-negative bacteria: a phylogenetic perspective. Current Opinion in Immunology, 38: 8–17.
    null Novoa B , Bowman TV , Zon L , Figueras A . 2009. LPS response and tolerance in the zebrafish (Danio rerio). Fish & Shellfish Immunology, 26(2): 326–331.
    null Ohtani M , Hayashi N , Hashimoto K , Nakanishi T , Dijkstra JM . 2008. Comprehensive clarification of two paralogous interleukin 4/13 loci in teleost fish. Immunogenetics, 60(7): 383–397.
    null Okabe Y , Medzhitov R . 2016. Tissue biology perspective on macrophages. Nature Immunology, 17(1): 9–17.
    null Parra D , Rieger AM , Li J , Zhang YA , Randall LM , Hunter CA , Barreda DR , Sunyer JO . 2012. Pivotal advance: peritoneal cavity B-1 B cells have phagocytic and microbicidal capacities and present phagocytosed antigen to CD4+ T cells. Journal of Leukocyte Biology, 91(4): 525–536.
    null Qian C , Cao XT . 2018. Dendritic cells in the regulation of immunity and inflammation. Seminars in Immunology, 35: 3–11.
    null Qian X , Ba Y , Zhuang QF , Zhong GF . 2014. RNA-Seq technology and its application in fish transcriptomics. Omics A Journal of Integrative Biology, 18(2): 98–110.
    null Ranf S . 2016. Immune sensing of lipopolysaccharide in plants and animals: same but different. PLoS Pathogens, 12(6): e1005596.
    null Ray R , Rai V . 2017. Lysophosphatidic acid converts monocytes into macrophages in both mice and humans. Blood, 129(9): 1177–1183.
    null Ricci C , Ruscica M , Camera M , Rossetti L , Macchi C , Colciago A , Zanotti I , Lupo MG , Adorni MP , Cicero AFG , Fogacci F , Corsini A , Ferri N . 2018. PCSK9 induces a pro-inflammatory response in macrophages. Scientific Reports, 8(1): 2267.
    null Rieger AM , Konowalchuk JD , Grayfer L , Katzenback BA, Havixbeck JJ , Kiemele MD , Belosevic M , Barreda DR . 2012. Fish and mammalian phagocytes differentially regulate pro-inflammatory and homeostatic responses in vivo. PLoS One, 7(10): e47070.
    null Sepulcre MP , Alcaraz-Pérez F , López-Mu?oz A , Roca FJ , Meseguer J , Cayuela ML , Mulero V . 2009. Evolution of lipopolysaccharide (LPS) recognition and signaling: fish TLR4 does not recognize LPS and negatively regulates NF-κB activation. The Journal of Immunology, 182(4): 1836–1845.
    null Shao CW , Bao BL , Xie ZY , Chen XY , Li B , Jia XD , Yao QL , Ortí G , Li WH , Li XH , Hamre K , Xu J , Wang L , Chen FY , Tian YS , Schreiber AM , Wang N , Wei F , Zhang JL , Dong ZD , Gao L , Gai JW , Sakamoto T , Mo SD , Chen WJ , Shi Q , Li H , Xiu YJ , Li YZ , Xu WT , Shi ZY , Zhang GJ , Power DM , Wang QY , Schartl M , Chen SL . 2016. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry. Nature Genetics, 49(1): 119–124.
    null Shapouri-Moghaddam A , Mohammadian S , Vazini H , Taghadosi M , S-A Esmaeili , Mardani F , Seifi B , Mohammadi A , Afshari JT , Sahebkar A . 2018. Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology Banner, 233(9): 6425–6440.
    null Shi C , Pamer EG . 2011. Monocyte recruitment during infection and inflammation. Nature Reviews Immunology, 11(11): 762–774.
    null Sica A , Mantovani A . 2012. Macrophage plasticity and polarization: in vivo veritas. Journal of Clinical Investigation, 122(3): 787–795.
    null Soleto I , Fischer U , Tafalla C , Granja AG . 2018. Identification of a potential common ancestor for mammalian cross-presenting dendritic cells in teleost respiratory surfaces. Frontiers in Immunology, 9:59.
    null Stafford JL , Mclauchlan PE , Secombes CJ , Ellis AE , Belosevic M . 2001. Generation of primary monocyte-like cultures from rainbow trout head kidney leukocytes. Developmental & Comparative Immunology, 25(5–6): 447–459.
    null Tauber AI . 2003. Metchnikoff and the phagocytosis theory. Nature Reviews Molecular Cell Biology, 4(11): 897–901.
    null Triantafilou M , Triantafilou K . 2002. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends in Immunology, 23(6): 301–304.
    null Uribe-Querol E , Rosales C . 2017. Control of phagocytosis by microbial pathogens. Frontiers in Immunology, 8:1368.
    null Wan F , Hu CB , Ma JX , Gao K , Xiang LX , Shao JZ . 2016. Characterization of γδ T cells from zebrafish provides insights into their important role in adaptive humoral immunity. Frontiers in Immunology, 7(3): 675.
    null Wiegertjes GF , Wentzel AS , Spaink HP , Elks PM , Fink IR . 2016. Polarization of immune responses in fish: the ‘macrophages first’ point of view. Molecular Immunology, 69(3): 146–156.
    null Wu Y , Wu WT , Wong WM , Ward E , Thrasher AJ , Goldblatt D , Osman M , Digard P , Canaday DH , Gustafsson K . 2009. Human γδ T cells: a lymphoid lineage cell capable of professional phagocytosis. The Journal of Immunology, 183(9): 5622–5629.
    null Wynn TA , Chawla A , Pollard JW . 2013. Macrophage biology in development, homeostasis and disease. Nature, 496(7446): 445–455.
    null Yamaguchi T , Takizawa F , Fischer U , & Dijkstra JM . 2015. Along the axis between type 1 and type 2 immunity; principles conserved in evolution from fish to mammals. Biology, 4(4): 814–859.
    null Yu T , Guo WL , Tian Y , Xu J , Chen JH , Li L , Wen ZL . 2017. Distinct regulatory networks control the development of macrophages of different origins in zebrafish. Blood, 129(4): 509–519.
    null Zhang M , Zhu HP , Ding Y , Liu ZY , Cai ZJ , Zou M-H . 2017. AMP-activated protein kinase α1 promotes atherogenesis by increasing monocyte-to-macrophage differentiation. Journal of Biological Chemistry, 292(19): 7888–7903.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(889) PDF downloads(719) Cited by()

Related
Proportional views

Specific function and modulation of teleost monocytes/macrophages: polarization and phagocytosis

doi: 10.24272/j.issn.2095-8137.2019.035
Funds:  This study was supported by the National Natural Science Foundation of China (31772876, 41776151), Natural Science Foundation of Zhejiang Province (LZ18C190001, LR18C040001), Scientific Innovation Team Project of Ningbo (2015C110018), and K.C. Wong Magna Fund in Ningbo University
    Corresponding author: Jiong Chen

Abstract: Macrophages exist in most tissues and play a variety of functions in vertebrates. Teleost fish species are found in most aquatic environments throughout the world and are quite diverse for a group of vertebrate animals. Due to whole genome duplication and environmental adaptation, teleost monocytes/macrophages possess a variety of different functions and modulations compared with those of mammals. A deeper understanding of teleost monocytes/macrophages in the immune system will not only help develop teleost-specific methods of disease prevention but will also help improve our understanding of the various immune mechanisms in mammals. In this review, we summarize the differences in polarization and phagocytosis of teleost and mammalian macrophages to improve our understanding of the various immune mechanisms in vertebrates.

Xin-Jiang Lu, Jiong Chen. Specific function and modulation of teleost monocytes/macrophages: polarization and phagocytosis[J]. Zoological Research, 2019, 40(3): 146-150. doi: 10.24272/j.issn.2095-8137.2019.035
Citation: Xin-Jiang Lu, Jiong Chen. Specific function and modulation of teleost monocytes/macrophages: polarization and phagocytosis[J]. Zoological Research, 2019, 40(3): 146-150. doi: 10.24272/j.issn.2095-8137.2019.035
Reference (1)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return